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Abstract—In this paper we will give short overview of different 
applications of artificial neural networks in electronics. Artificial 
neural networks are shown to be universal approximators, so they 
were successfully used in applications in modelling of electronic 
circuits, as well as in fault diagnosis and classification.

Index Terms— artificial neural networks, diagnosis, modelling, 
simulation.
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I.  Introduction

Artificial neural networks (ANNs) were shown to be an 
excellent candidate for the ap proxi  mant needed in the black-
box modelling. Also, they are universal approximators so they 
can be used in the best way both to capture the mapping, and 
to search through the dictionary, thereby to perform diagnosis. 

We will give in this paper an overview of numerous 
applications of ANNs both in modelling in diagnosis. There 
are also many more applications of artificial neural networks 
that we performed, but they cannot be presented here. We will 
abstract only the ones we consider most important.

We will start from the first example of application of ANNs 
in modelling, when characteristics of MOS transistor were 
modelled and implemented in behavioral simulator. Then, a 
micro-electro-magneto-mechanical actuator was modelled but 
the modelling was in fact quasi-dynamic. The motivation for 
modeling of non-linear dyna mic net works appeared with the 
problem of modeling implanted hearing aids, so this example is 
followed by different instances of modelling nonlinear dynamic 
circuits. Modelling of the A/D and D/A interfaces in mixed-
mode simulation is one of the most published examples. 

Another aspect of our application of artificial neural network 
is defects diagnosis. Here, we started from analogue electronic 
circuits, which are difficult to be diagnosed due to huge number 

of possible faults, and inherent nonlinearity of these circuits. 
This concept is also shown in a complex system that can be 
decomposed in order to simplify the process of diagnosis. This 
is followed by few examples where ANNs are used to capture 
mappings in different fault dictionaries. 

II.  Application of ANNs in Modelling

There are two basic approaches to the mo de lling of electronic 
components: the physical and the black-box approach. When 
the physical laws undergoing the com ponent’s behavior are 
known one may create a set of expressions (usually by sol ving 
differential equa tions) relating the termi nals excitations and 
responses. The obtained cur rent-voltage relations are referred 
to as physical model of the component. Main advantage of this 
concept may be devoted to the existence of phy sical meaning 
of the coefficients arising in the mo delling expressions. There 
are, however, many diffi  culties in the implementation of such 
models [1]. Firstly, one rarely knows the physics of the com-
po nents in such a detail that enables to estab lish the mu tual 
dominance of all physical and tech nological pa rameters. 
Further, in most cases it is not possible to describe the complete 
behavior by one equation only having in mind diff erent wor-
king regimes of the component [2]. The e qua  tions describing 
parts of the model, fre quen tly become incompatible leading to 
non-analyti cal overall approximating function.

When no full knowledge of the phy sics of the device is 
available one uses the so-called black-box approach. The 
behavior is captured by me asu re ments of input (signal) and 
output (res pon se) quan tities. After that an approximation proce-
dure is performed over the set of measured data in order to get 
an analytical expression conve nient for equation formulation 
in the circuit-si mu lation process. The question of the choice 
of ade quate approximant is crucial for this type of modelling. 
In some cases polynomial interpo lation is used in between two 
measured points [3]. In other cases the complete measurement 
is described by linear seg ments leading to piece-wise linear 
models [1], [4]. To our knowledge there is no general receipt 
for the cho ice of an analy tical function for this approximation. 
Main ad van tage of the black-box approach is related to the fact 
that one doesn’t need to have full know ledge on the physics of 
the device being model led. In general there are no limitations 
about the choice of the approximants, most frequently, the main 
restriction is that they need to be analytical function. From 
the o ther side, main problem en coun tered during use of this 
approach is model ling simultaneously of the non- linear and 
dynamic behavior of the device. 
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Artificial Neural Networks (ANN) were shown to be an 
excellent candidate for the ap proxi  mant needed in the black-
box modelling. The first example of ap plication of an ANN for 
mo del ling an electronic device was given in [5]. Fig. 1. contains 
reproduction of the first model ling results. There the output 
characteris tics of a MOS transistor are approximated by a feed-
for ward three layer ANN. The implementation of such model 
was li mi ted by the need of existence of behavioral simulator 
being able to formulate cir cuit equations for sys tem containing 
simulta ne ously component des cribed by electrical equa tions 
and others described by functions (i.e. ANNs) [6, 7].

Fig. 1. MOS transistor characteristics and approximation

After publication of the first results in [5], ANNs were 
successfully applied in electronic modelling seve ral times 
[8]. In all these applica tions feed-forward networks were used 
meaning that only resistive pro perties of the devices were 
captured. The first attempt of modelling dynamic behavior was 
described in [9]. A micro-electro-magneto-mechanical actuator 
was modelled but the modelling was in fact quasi-dynamic. 
Name ly, by its virtue it was possible to se pa rate the re sis tive 
and the dynamic part of the model. The ANN was applied for 
the resistive part but strong ly con nec ted to the rest of the model. 
This is illus trated in Fig. 2. Fig. 2a represents the electrical 
sche ma tic of the mo del of a non-linear magnet, while Fig. 2.b 
represents the characteristics of the non-linear-inductor both 
original and ap proximated. Note the magnet has a moving 
ar mature hence the dependence of the cha rac  teristics on the 
displacement x. These drawings we re ta ken from [9] without 
changes so one should note that Φ  and Ψ  stand for the same 
variable: the mag netic flux.

 
a)

 
b)

Fig. 2. Modelling of an electro-magnet with moving armature 

ANNs are then used for modelling of non-linear dyna mic 
net works. The motivation for modeling of this kind of circuits 
appeared with the problem of modeling implanted hearing aids 
[10], [11]. Here, however, in order to present reproducible 
results the nonlinear circuit, Fig. 3, containing quartz crystal, 
Fig. 4, will be considered for modeling. The schematic symbol 
for a quartz crystal is shown in Fig. 4a. The equivalent circuit 
for a quartz crystal near fundamental resonance is shown in 
Fig. 4b. The equivalent circuit is an electrical representation 
of the quartz crystal’s mechanical and electrical behavior. 
The components C1, L1, r1, are called the motional arm that 
represents the mechanical behavior of the crystal element. C0 
represents the electrical behavior of the crystal element and 
holder [12]. 

C1 is motional arm capacitance representing the elasticity of 
the quartz, the area of the electrodes on the face, thickness and 
shape of the quartz wafer. Values range in femtofarads.

L1 is motional arm inductance representing the vibrating 
mechanical mass of the quartz in motion. Low frequency 
crystals have thicker and larger quartz wafers and range in a 
few Henrys. High frequency crystals have thinner and smaller 
quartz wafers and range in few millihenrys.

r1 represents the real resistive losses within the crystal. 
C0 is shunt capacitance representing the sum of capacitance 

due to the electrodes of the crystal plate plus stray capacitances 
due to the crystal holder and enclosure.

Crystal has two resonant frequencies characterized by a zero 
phase shift. The first is the series resonant, fs frequency. The 
second resonant frequency is the anti-resonant fa, frequency.

As an example of modeling of nonlinear dynamic circuits 
[13], [14] the electronic circuit depicted in Fig. 3. will be 
modeled. The pair of branches containing diodes is introduced 
enabling the nonlinearity of the circuit to be accounted for. 
Resonant frequency of the crystal oscillator is 8MHz, meaning 
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that both fs and fa are close to that value. So, a chirp i(t) signal 
is needed to cover the frequency band around 8MHz. Recurrent 
time delay neural network with five input, four hidden and one 
output neuron is used, because the structure from Fig. 3. is 
highly nonlinear. 

The response of this circuit excited by a chirp signal with 
the change of frequency from 7.997÷8.03MHz is given in Fig. 
5. Series resonant frequency can be noticed first, and then, anti-
resonant frequency.

Fig. 3.  Nonlinear dynamic circuit chosen for modeling

                 a)                                                                    b)

Fig. 4.  a) Crystal equivalent circuit and b) its symbol
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Fig. 5.  Response of the circuit, Fig. 4, excited by a chirp signal

The responses of the modeled circuit and the model are 
shown in Fig. 6. It is obtained as an envelope of the time domain 
response [15].

Fig. 6.  Responses of the original circuit (Fig. 4) and the model (only the 
envelopes of the positive periods are shown)

The next example of ANNs implementation for behavioral 
modelling of nonlinear dynamic circuits is modelling of the 
A/D and D/A interfaces in mixed-mode simulation. We will 
here present only modelling of D/A interface. Modelling of A/D 
interface is explained in detail in [16], [17].
For modelling of the D/A interface [16], [17], [18] the output 
circuit of the digital part is represented by a circuit that is 
supposed to drive an analog load. Note that mixed-mode 
simulation is considered. This means that an event sche duler 
is active, marking the controlling input of the digital circuit. 
The event sche duler does not allow for two inputs to be active 
simultaneously because that is con sidered as a hazard. Hence, 
modelling the output of an inverter is general enough for 
verification of the modelling procedure.

The topology of the new model is depicted in Fig. 7a. In 
the figure, vin stands for a con trolling ramp-shaped voltage-
waveform:

[ ])tanh(1)( Tinmaxin vvIvi −−=    (1)

and Z is a recurrent time-delay neural network approximating 
the function: 

)(out iZv = .      (2)
  

a)
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Fig.7. a) Circuit representation of the model and b) responses: 1) unloaded 
CMOS inverter (considered as digital output) and 2) of the new model.

 Here, Imax is the maximum supply current during the 
transition in the inverter, and vT is (usually) equal to VDD /2, VDD 
being the supply voltage. Obviously, the ANN model of Z has 
one input (current) and one output (voltage) terminal. The net-
work is trained using input-output pairs [i(t), vout(t)], where i(t) 
is calculated from (1) while vout(t) is obtained from simulation 
by the Alecsis simulator of the circuit to be modelled (here an 
in verter). Note that we need the electrical schematic of the 
digital part during the model  ling phase.

First results are shown in Fig. 7b. Here output waveforms 
of the original inverter and the model are shown to illustrate the 
quality of the approximation procedure. Unloaded circuits are 
simulated. The ANN has five input units, three hidden units, 
and one output unit.

The following three examples are intended to check the 
modelling procedure based on situations not present during 
training. The first trace (marked 1)) in Fig. 8a is the output 
voltage of an inverter being loaded by an inverter, all modelled 
by re gular transistor models, i.e., obtained by regular circuit 
simulation. The se cond one (marked 2)) represents the response 
of the same circuit with the ANN model used for the driving 
part and circuit model for the loading. This situation was not 
encountered in the training process. Excellent agreement was 
obtained, especially in the steepest part of the response that 
defines both the gain and the delay of the loaded inverter. 

Further, Fig. 8b gives a similar comparison the loading 
element here being a trans mission line modelled by a π-RC 
network. Finally, a TTL load (diode), Fig. 9, was used to 
demonstrate the success of the ANN model in the case of a 
‘large’ non-linear dynamic load. Note the average value of the 
output voltage is less than 0.5 V while the difference is still 
smaller than 10 mV. Once again, the ANN model was developed 
using an un loaded inverter. 

Our next usage of artificial neural networks in modelling 
is producing a small signal linear dynamic model of the solar 
cell that may be used for characterization of the in ter  face and 
in the whole PV system in the frequency domain [19]. This 
idea is based on the experience that the output voltage and the 
output current of a PV panel are not pure DC constant due to 

the inevitable connection to a converter (or inverter) which is 
working as a switching system, so we came to a conclusion that 
interest exists for the behavior of the solar cell at the frequencies 
of the harmonics of the converters switching frequency which 
is subject of change according to the maximum-power-point 
tracking.

  a)
  

  b)

Fig. 8. a) Responses of 1) inverter loaded by inverter, 2) a model loaded by 
inverter, and 3) an ANN (modelling the output) loaded by an ANN modelling 
the input of an inverter. b) Responses of 1) an inverter loaded by RC ð -network 
and 2) a model loaded by RC ð -network.

Fig. 9. Responses of a) inverter loaded by a diode and b) ANN model loaded 
by a diode.

To extract the small signal model the usual one-diode large 
signal dy na mic model is used with known parameter values. The 
modeling process is conceived to be performed in two steps. In 
the first one, for a given cell, measurements are performed in 
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order to produce the element values and proper parameters for 
the one-diode nonlinear model. In the second step the nonlinear 
model obtained so far is exploited for generation of the linear 
one. The element values versus photocurrent and cell-voltage 
dependences are cap tu red by feed-forward artificial neural 
networks, one per element. The ANNs serves as a mapping 
algorithm capturing the “look-up” tables with the dependences 
of the model elements on the illumination and cell voltage. 
Verification of the model is performed by comparisons of 
the small signal frequency domain responses of the original 
nonlinear dynamic model and of the new linear RC model. We 
expect implementation of these results to find place not only 
in modeling for energy conversion applications but also for 
modeling devices that are capturing light as signal carrying 
information.

III.  Application of ANNs in Diagnosis

Whenever we think about why something does not behave, 
as it should, we are starting the process of diagnosis. Diagnosis 
is therefore a common activity in our everyday lives [20]. 
Every system is liable to faults or failures. In the most general 
terms, a fault is any change in a system that prevents it from 
operating in the proper manner. We define diagnosis as the 
task of identifying the cause and location of a fault manifested 
by some observed behaviour. This is often considered to be a 
two-stage process: first the fact that fault has occurred must be 
recognized – this is referred to as fault detection. Secondly, the 
nature and location should be determined such that appropriate 
remedial action may be initiated.

The general structure of a diagnostic system is shown in 
Fig. 10. Signals u(t) and y(t) are input and output to the system, 
respectively. Faults and disturbances (here measurement 
errors) also influence the system under test, here denoted as 
the “Process”, but there is no information about the values of 
these errors. The task of the diagnostic system is to generate a 
diagnostic statement S, which contains information about fault 
modes that can explain the behaviour of the Process. Note that 
the diagnostic system is assumed to be passive i.e. it cannot 
affect the Process itself.

The whole diagnostic system can be divided into smaller 
parts referred here to as tests. These tests are also diagnostic 
systems, DSi. It is assumed that each of them generates 
diagnostic statement Si. The purpose of the decision logic 
(voting system) is then to combine this information in order to 
form the diagnostic statement S.

Analogue electronic circuits are known to be difficult to test 
and diagnose. Apart from the huge number of possible faults, 
this difficulty is a consequence of the inherent nonlinearity of 
these circuits. Even linear circuits (having linear input-output 
signal interdependence) exhibit nonlinear relations between 
circuit parameters and the output response. There are no linear 
active networks. Active networks are nonlinear with nonlinear 
reactive elements. They may be linearized and thought of as 
such in situations where signal and parameter changes are 
small in comparison to nominal values. When large parameter 

changes or even catastrophic faults occur (affecting the DC 
state), however, one must distinguish between linear and 
analogue circuits.

Fig. 10. A general diagnostic system

Here we describe the results of applying feed-forward ANNs 
to the diagnosis of non-linear dynamic electronic circuits with 
no restriction on the number and type of faults. This method is 
based on fault dictionary creation and using an ANN for data 
compression by memorizing the table representing the fault 
dictionary. Only DC and small signal sinusoidal excitations are 
applied, so preserving the usual measurement procedure for 
generating the data given in a component’s and/or a circuit’s 
data-sheets. The ANN so created is, consequently, used for 
diagnosis by applying to it the signals obtained by measuring 
the faulty network. This process may be considered as looking-
up a fault in the fault dictionary. The ANN finds the most 
probable fault code that corresponds to the measured signals. 

The network used for this diagnostic example is a feed-
forward neural network structured in three layers. It has only 
one hidden layer, which has been proved sufficient for this kind 
of problem [21]. The neurons in the hidden layer are activated 
by a sigmoidal function, while the neurons in the output layer 
are activated by a linear function. The learning algorithm used 
for training this network is a version of the steepest-descent 
minimization algorithm [22].

In order to describe the way in which the fault dictionary 
was created, the circuit in Fig. 11. is used as an application 
example [23]. This is a CMOS operational amplifier consisting 
of seven transistors. To our knowledge this example belongs 
to the category of the most complex ones reported, both from 
the number of circuit elements point of view and the number 
of faults inserted. Three (nonlinear) capacitors are associated 
with every transistor totalling the number of nonlinear circuit 
elements to 28 but, for the sake of simplicity, are not shown in 
the figure. In order to emphasize the method as such, while not 
offering a full solution of the diagnostic problem for this circuit, 
having in mind abundance of possible faults, a reduced set of 
faults was considered. To this end only single transistor faults 
are sought. That, of course will not affect the generality of the 
ideas implemented in the next. 
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Ten faults per transistor, six catastrophic and four parametric 
were added to the dictionary. As shown in the figure (using T7 as 
an example) there exist three open-circuit faults (OC) and three 
short-circuit faults (SC) per transistor. In addition, two faulty 
values for every channel length (±20%), and two for every 
channel width (±20%) were introduced, totalling 10 faults per 
transistor. 

The DC output values were first obtained by simulation. 
In addition, the frequency response of the circuit (the non-
inverting input terminal was excited by a signal of amplitude 
1mV) was obtained by simulation over a fixed frequency range 
in order to extract two response parameters: the nominal gain 
(Am) and the 3-dB cut-off frequency (f3 dB m). Note that, for the 
DC supply current point of view, the fault effects of most open 
faults at sources and drains in series connected transistors may 
have equivalent signatures.

Fig. 11. The operational amplifier circuit. SC = short circuit, OC=open circuit

There are several important issues that need to be considered 
in this diagnosis process. The fault coding is one of them. In 
fact, some defects exhibit very similar effects. So, input data 
can have very close numerical values, and if the output values 
(defect codes) were also similar, the network could not always 
be trained successfully. Thus, faults are coded randomly, so that 
faults with similar effects are unlikely to have similar codes. 
This approach is proven to be good, because the way of coding 
influences the training time, and also, the training error.

Another issue is existing of the ambiguity groups or the 
groups of equivalent faults. Here, we can say that an ambiguity 
group consists of a set of faults that propagate identical 
signatures to the output, making the faults detectable and the 
circuit testable, but no distinction between the individual faults 
is possible making them un-diagnosable. In this example, we 
formed 10 ambiguity groups, so only one representative of each 
ambiguity group is included in the fault dictionary. We found 
that the complete fault dictionary in this case had 55 elements.

With three pieces of data for each fault, the neural network 
input structure was restricted to three input terminals. The ANN 
diagnoses the fault by outputting the fault-code (m) as a signal 
level, so we needed only one output neuron. The number of 

hidden neurons, n, was found by trial and error after several 
iterations starting with an estimation based on that in [24]. 
The goal was to find the optimum n leading to a satisfactory 
classification even with noisy excitations. Using too many 
neurons would increase the training time, but using too few 
would starve the network of the resources needed to solve 
the problem. In practice, 30 hidden neurons were used. After 
successful training, no mistakes were observed for all 55 faults. 

The generalization property of the network was verified 
by supplying noisy data to its inputs. Thirty samples were 
examined. For each sample, one input is incremented by +5% 
or -5%, representing noise generated during the measurement 
process. The ANN response was considered to be correct (i.e. 
acceptable) when its value was in the range [(m-0.5), (m+0.5)]. 
All faults were diagnosed, though few of them with some 
difficulties.

Next application of feed-forward artificial neural networks 
to the diagnosis of mixed-mode electronic circuit is in a more 
complex system that can be decomposed in order to simplify 
the process of diagnosis [25]. Actually, in order to tackle the 
circuit complexity and to reduce the number of test points, we 
implemented hierarchical approach to the diagnosis generation 
with two levels of decision: the system level and the circuit 
level. For every level, using the simulation-before-test (SBT) 
approach, fault dictionary was created first, containing data 
relating the fault code and the circuit response for a given 
input signal. ANNs were used to model the fault dictionaries. 
During the learning phase, the ANNs were con sidered as an 
approximation algorithm to capture the mapping enclosed within 
the fault dictionary. Later on, in the diagnostic phase, the ANNs 
were used as an algorithm for mapping the measured data into 
fault code what is equivalent to searching the fault dictionary 
performed by some other diagnostic procedures. At the topmost 
level, the fault dictionary was split into parts simplifying the 
implementation of the concept. A voting system was created at 
the topmost level in order to distinguish which ANN’s output is 
to be accepted as the final diagnostic statement. The approach 
was tested on an example of an analog-to-digital converter, 
and only one test point was used i.e. the digital output. Full 
diversity of faults was considered in both digital (stuck-at and 
delay faults) and analog (parametric and catastrophic faults) 
part of the diagnosed system. Special attention was paid to the 

Fig. 12. The ANN based hierarchical diagnostic system
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faults related to the A/D and D/A interfaces within the circuit. 
The example is given in Fig. 12, where a mixed-mode circuit 
is diagnosed. 

ANN1 diagnoses defects in the digital part of the system, 
while ANN2 diagnoses defects in the analog part of the system. 
ANN3 gets the measured signature as an input as ANN1 and 
ANN2 do. It gets trained so that its output code takes values 
from the set {-1, 0, 1}. We refer to these values as to resolution 
key. Namely, if the defect comes from the digital part, the 
output code is set to 1, while if it comes from the analog, the 
output code is set to -1. In the special cases when ambiguity 
arises, that is when one has the same signature coming from 
faults belonging to the digital and analog part, we assign 0 
to the output of ANN3. Generally, one can introduce as many 
levels of diagnosis as necessary.  

The implementation of ANNs for diagnostic purposes 
was also performed in [26] and [27] in the same way as that 
described in [23], [25]. An artificial neural network (ANN) was 
used to capture the fault dictionary and perform the diagnosis. 

Namely, oscillation-based diagnosis (OBD) was used for 
the first time as a systematic method for diagnosis of analog 
filter cells. The method was implemented on a second order 
Sallen and Key notch cell [28]. A minimum number of test 
points and, accordingly, measurements were used: just the 
response at the output terminal. The measured output signal 
was processed in order to obtain the following parameters: 
frequency of the first harmonic and four consecutive harmonics. 
This is clearly simpler than versions of oscillation-based testing 
that also require monitoring of the supply current. Single soft 
and catastrophic faults were considered in detail, while some 
double soft faults were also shown to be detectable. 

For every passive element within the RC circuit, a short- 
or open-circuit is considered as a catastrophic fault. We found 
that in six out of twelve faulty cases the circuit oscillated. In 
all cases the fault effect is distinct from the fault-free, because 
the oscillation frequency is not the same as that of the fault-
free circuit, or there is no oscillation. In general, therefore, 
we can state that by implementing OBT we got almost perfect 
fault coverage of catastrophic faults. We also calculated the 
frequency change relative to the oscillating frequency, given as 
a percentage.

When considering parametric (soft) defects, we decided that 
parametric defects were seen when the element value within the 
RC-circuit was changed by 20% compared to its nominal value. 
Both positive and negative changes are taken into account. 
By inspection of the obtained results, we noticed that in only 
two cases there was no difference between the behavior of the 
fault-free and the faulty circuit. In four cases, the change in the 
frequency value was relatively low (less than 5%) so making 
the decision difficult. Here again we may conclude that the fault 
coverage is almost perfect.  

The possible number of double parametric defects is much 
larger than in the case of the single faults. Therefore, a reduced 
set of pairs of soft faults was considered. We may observe that 
in all cases, the faulty circuit exhibits a new value for oscillation 

frequency. In five cases the change in the frequency value is 
small.

The complete fault dictionary was memorized as parameters 
(weights and thresholds) of artificial neural network. Diagno-
sis was performed by running the neural network after 
measurement (here simulation) of the faulty circuit. Noise was 
added to the signals obtained by simulation in order to check 
for the robustness of the method. It was shown that OBD may 
be successfully used for diagnosis of the notch cell, which in 
our experience, is among the most difficult circuits to handle. 
In order to enable manipulation with an extremely large amount 
of data we now intend to implement a hierarchical approach, as 
was done for testing purposes in [25]. 

Fig. 13. Odd harmonics measured from supply current, running different 
benchmark tests. The first harmonic is omitted for convenience

One more example of using artificial neural networks in 
diagnosis is given in the next. The method we proposed [29] is 
based on measurement of the supply current and analysis of its 
harmonic content. Namely, we suppose that different activities 
happening within a computer map themselves into the supply 
current waveform in a different way and consequently may be 
recognized by analysis of the harmonic content. To demonstrate 
the method we selected a set of software packages with the goal 
to develop a tool that will recognize every one of them when 
running within the computer. For each of them we measured 
the supply current and computed the harmonics generated by 
one personal computer (DELL Optiplex 980, Intel Core i7 CPU 
@ 2.8GHz, 4GB RAM, 500GB HDD) under different working 
conditions i.e. by different benchmark tests running. 

Approximately 50 harmonics were observed in a sample 
(200 ms, 10000 samples) of a grid current. Fig. 13. illustrates 
two (out of eight) different states of the workstation. Since even-
harmonics have incomparably smaller values than the odd ones, 
only the DC, the main, and the odd harmonics are presented.

We showed in [29], [30] how one can establish, by 
measurement of the supply current taken from the electricity 
distribution grid, which software, one out of a previously given 
list, is running within the computer. For that purpose artificial 
neural networks were used to perform the classification i.e. 
recognition of the state of the computer. The method was 
proven to be good. 
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IV.  Conclusion

In this paper we presented numerous examples where we 
proved that artificial neural networks could be used in ma-
ny different applications in electronics. We applied them 
successfully in modelling of electronic circuits, as well as in 
fault diagnosis and classification.
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