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 Abstract— This paper demonstrates a novel technique based 
on the use of a fuzzy logic system and the simulation before test 
(SBT) approach for hard faults detection and localization in an-
alog electronic circuits comprising bipolar transistors. For this 
purpose, first, simulations of the circuit under test (CUT) are 
performed before the test stage by investigating the response of 
the circuit under test in faulty and fault-free conditions. Follow-
ing this, two signatures parameters—output voltage and supply 
current—are observed and used for the fault diagnosis; the CUT 
is simulated using the OrCAD/PSpice software, and the output is 
analyzed in the DC domain. This method is validated through an 
inverter amplifier based on the uA741 operational amplifier. Then 
the results of different experiments are presented to demonstrate 
the applicability of the proposed method by increasing its efficien-
cy.

Index Terms— Analog circuits, fuzzy logic, hard faults, fault 
detection, fault diagnosis, fuzzy inference system, simulation be-
fore test.
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I. Introduction

THE subject of analog circuit fault diagnosis had gained 
popularity among researchers from the late 1970s to the 

early 1980s [1]–[2] due to the growing complexity of electronic 
circuits. Since then, fault detection and classification has been 
invoking a great deal of interest, becoming one of the largest 
domains of analog testing [3], [1]. However, it still faces some 
difficulties, e.g., in terms of inaccuracy of measurement, circuit 
nonlinearities, consideration of component tolerances, and poor 
fault models [4]. With respect to these difficulties, fuzzy logic 
seems to be one of the most effective tools that can be effec-
tively employed to build an appropriate fuzzy inference system 
(FIS) that will have the potential to detect and locate faults de-
pending on the inputs assigned to it.

A fault is a change in the value of a component with respect 
to its regular value that causes failure of the circuit. Faults in 

analog circuits are generally classified into two categories: hard 
faults and soft faults (i.e., catastrophic and parametric). Hard 
faults are attributed to short or open circuits; they lead to fail-
ures that manifest themselves in an altogether malfunctioning 
circuit [5]–[6]. Conversely, soft faults are those changes that 
hinder the performance of a circuit. This type of faults causes 
the parameters to deviate from their nominal value that can con-
sequently leave their tolerance band [7]–[8].

Fault diagnosis in analog circuits is conducted using two 
broad approaches [4]: the simulation before test approach 
(SBT) and the simulation after test approach (SAT). SAT ap-
proach consists of calculating the circuit parameters from the 
measured responses obtained via the circuit under test (CUT) 
to observe if they exhibit the expected behavior [2], [9]. On 
the other hand, in the SBT approach, the response of the CUT 
is measured in the presence of a pre-selected set of faults, and 
the results are stored in a fault dictionary. The fault location is 
detected by comparing the circuit responses with the correspon-
dents in the fault dictionary [9]–[10]. 

In this article, a strategy for hard fault detection and local-
ization in analog circuits is presented, and a system based on 
fuzzy logic is used for this purpose. The proposed method is a 
part of the SBT approach, and experimental results indicate it 
has a high capacity. Moreover, using fuzzy logic makes it pos-
sible to distinguish between different faults even if their values 
are very close to each other; therefore, the ambiguity rate is 
zero.

II. Fault Detection and Localization Algorithm

To locate faults, the following successive steps have been 
assumed:

1) Simulation of the CUT in the DC domain.
2) Extraction of the output voltage and supply current for 

fault-free and other faulty conditions.
3) Creation of the fault dictionary.
4) The parameters extracted from the fault dictionary are 

presented as inputs in a fuzzy logic system that detects 
and localizes the fault. 

The block diagram for the proposed approach has been il-
lustrated in Figure 1.

 
Fig. 1.  Block diagram of the proposed algorithm.

DC Hard Faults Detection and Localization in Analog 
Circuits Using Fuzzy Logic Techniques

Mohammed Merabet and Nacerdine Bourouba

Manuscript received 29 January 2019. Received in revised form 16 April 
2019 and 16 May 2019. Accepted for publication 18 May 2019.

Mohammed Merabet is with the Laboratory of Scientific Instrumentation 
(LIS), Faculty of Technology, Ferhat Abbas Setif 1 University, 19000, Setif, 
Algeria. (phone: +213-770-66-44-06; e-mail: merabet_moh2005@yahoo.fr). 

Nacerdine Bourouba is with the Laboratory of Scientific Instrumentation 
(LIS), Faculty of Technology, Ferhat Abbas Setif 1 University, 19000, Setif, 
Algeria  (e-mail: bourouband@yahoo.fr).



ELECTRONICS, VOL. 23, NO. 1, JUNE 2019 19

III. Fuzzy Logic Approach

The fuzzy approach is used to localize hard faults in analog 
circuits; these faults are caused by open or short components in 
bipolar transistors [11]. A fault dictionary is a priori produced 
by collecting signatures of different fault conditions that are 
simulated in the DC domain. A FIS is utilized to process the 
CUT’s response.

The basic architecture of a fuzzy logic system is shown in 
Figure 2.

Fig. 2.  Basic architecture of a fuzzy system.

The main component of fuzzy logic is the fuzzifier, which 
transforms real value inputs into members of fuzzy values by 
applying the membership functions of the fuzzy knowledge 
base [12]. Several types of membership functions can be used 
for the fuzzification process, such as triangular, trapezoidal, and 
Gaussian membership functions. The triangular shape has been 
used in this work. This function is frequently encountered in 
practice—e.g., [9]–[10], [13], [16]—given its efficiency with 
respect to calculation time. This efficiency can be attributed to 
its simple structure consisting of simple straight-line segments.

The inference engine takes the fuzzy input and converts it 
into fuzzy output by applying IF-Then type fuzzy rules (Figure 
3). The process of converting the fuzzy output of the inference 
engine into a crisp value is called defuzzification [3].

Fig. 3.  Fuzzy inference process.

There are a number of defuzzification methods [3], [9], such 
as centroid of area (COA), bisector of area (BOA), mean of 
maximum (MOM), smallest of maximum (SOM), and largest 
of maximum (LOM). Centroid defuzzification (COA) is the 
most commonly used method, as it is very accurate [10], [12]. 
The defuzzified values obtained through COA, unlike the val-
ues obtained through other methods, divide the area under the 
membership function into two equal parts (see Figure 4), which 
can directly compute the crispest value of the fuzzy quantity 
[10].

Fig. 4.  Defuzzifying methods.

Although there are mainly two types of fuzzy inference 
methods, namely, Mamdani and Sugeno methods, the Mamdani 
method was chosen to create the FIS due to the transparency of 
its rules between the inputs and outputs and its simple imple-
mentation steps [13]. It allows us to describe the knowledge in 
a more intuitive and human-like manner [9]. As opposed to the 
Sugeno model, the Mamdani model expresses the output using 
fuzzy terms instead of mathematical combinations of the input 
variables.

Mamdani uses an inference strategy that is generally termed 
as the max-min method. The format of the rule base for the 
Mamdani fuzzy systems has been provided below:

Where xpi (p = 1, 2, 3 … n) is the input, yl is the output of 
fuzzy rule, and 𝐴pl (p = 1, 2, 3 … n) is the fuzzy membership 
function that is associated with linguistic variables. Figure 5 il-
lustrates the max-min composition and centroid defuzzification 
methods [9], which have been used in this study.

Fig. 5.  Max-min composition and centroid defuzzification.

IV. Experiments And Results

To verify the feasibility of the proposed approach, we ap-
ply the steps mentioned in Section II to the operational am-
plifier uA741, which is operated in an inverting configuration 
and widely employed as building block components for many 
analog systems [14]. The simulation circuit is then simulated 
using the PSpice software. The data obtained from these simu-
lations was transferred to the MATLAB environment for use in 
the building of the FIS system. Additionally, the fuzzy toolbox 
was used to locate faults, as described below.
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A. Inverting Amplifier Circuit
Figure 6 depicts the configuration of an inverting amplifier. 

The closed-loop gain of the amplifier is set by two resistors: the 
feedback resistor, R2, and the input resistor, R1. The compo-
nent parameters are R1 = 1 k and R2 = 4.7 k. Figure 7 demon-
strates the transistor-level circuit of the uA741 amplifier that 
was used in this study. The chosen test vector includes the input 
voltage signal whose value ranges from − 5V to + 5V, which 
represent the limit values that can be accepted by the circuit 
and whose variation step is sufficient and necessary to explore 
the fault’s effect.

Fig. 6.  Inverting amplifier.

Fig. 7.  The uA 741 operational amplifier circuit at the transistor level.

B. Faults Applied
In this experiment, the faults that were considered were 

mostly short circuits and open circuits, which were applied 
to the active components (transistors). The short circuits were 
materialized by resistors of low values (1 Ohm), whereas open 
connection lines or resistors with high value (100 Mohm) were 
used for the open circuit [15]. Therefore, for each transistor in 
the circuit, six faults have been included in the fault list as illus-
trated in Figure 8 and as listed as follows:

• emitter contact open (EO);
• collector contact open (CO);
• base contact open (BO);
• base to collector short (BCS);
• base to emitter short (BES);
• collector to emitter short (CES).

Fig. 8.  Open and short transistor faults.

The inverting amplifier is an assembly of 18 transistors and, 
as the number of faults specific to each transistor is 6, these 
many components leads to the observation of the effects of 108 
theoretical faults. However, the number of faults was reduced to 
70 due to its electronic configuration:

• Some short or open faults measured individually at the 
level of an element are considered to be a duplicate fault 
because they affect another element that shares a common 
node with the first.

• Other short circuits associated with the same transistor 
are considered to be duplicate faults due to the way this 
element is connected in the circuit; for example, the diode 
element Q7 (shorted B-C junction) affects a short between 
B and E and is also treated as a short between E and C.

C. Building the Fault Dictionary
1. Output Voltage: A priori, the analysis of the transfer func-

tion is performed to detect the test vector (stimulus) at the input 
that allows the effect of faults to propagate to the output. The 
following findings will clarify this procedure: 

• The input voltage range and measurement of the corre-
sponding output voltage can be applied to reproduce the 
transfer characteristic (see Figure 9).

• This task is taken up by a set of faults that are yet to be ex-
plored to measure the characteristics of the circuit under 
its different fault conditions, some of which are presented 
in Figure 10.

Fig. 9.  Transfer function of the circuit for fault free. 
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(a)

(b)

(c)

Fig. 10.  Transfer function of the circuit for some fault conditions: (a) BOQ101 
(b) BESQ8 (c) BCSQ10.

2. Supply Current: The power supply current test applied 
to the inverting amplifier consists of measuring the current at 
the negative power supply to ensure that faults that were not 
detected by the first mode test (output voltage) are detected. 
The same test vectors that were used in the previous test were 
imposed here.

Figures 11 and 12 demonstrate the simulation results of the 
good circuit and the faulty circuits, respectively. The supply 
current has been plotted with respect to the input voltage Vin.

Fig. 11.  The supply current plots in terms of the input voltage.

(a)

(b)

(c)
Fig. 12.  Supply current of the circuit for some fault conditions: (a) CESQ3 (b) 
EOQ2 (c) ECSQ107.
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The faults dictionary that was constructed has been depicted 
in Table I. The results concern the fault coverage evaluation 
obtained using the classic method. The criterion on which this 
method is based is defined as a deviation of +/- 1.5% from the 
nominal value for the two fault analysis parameters (the sup-
ply current and the output voltage). This implies that any fault 
is considered to be detected if it produces a deviation on the 
nominal value of one of these parameters, which is equal to 
or greater than this tolerance value. Such a tolerance choice is 
made from the concept of a current or voltage meter for labo-
ratory use, requiring a precision class of no more than 1.5%. 
This resulted in a 78% fault coverage by using output voltage 
as a fault signature. An improvement in this fault detection rate 
was achieved by implying the supply current as the second fault 
signature—the combination of these two parameters allowed 
the detection of 85% faults. 

Table 1. Fault Dictionary Of The Inverting Amplifier Circuit

Fault ID Fault condi-
tions

Output 
Voltage(V)

Supply Cur-
rent(mA)

FIS Out-
put

f0 FF -3,9424 -0,8489 0

f1 BOQ1 -4,0182 -0,8306 1.1

f2 COQ1 -4,0111 -0,8531 2.06

f3 BOQ2 4,236 -1,1036 2.95

f4 COQ2 -3,5003 -0,8756 3.98

f5 BOQ3 -3,9924 -0,8407 5.02

f6 COQ3 -3,9919 -0,8568 6.05

f7 BOQ4 -2,9597 -0,8573 7.15

f8 COQ4 -3,5118 -1,0312 8.05

f9 BOQ5 -3,9707 -0,7608 8.99

f10 COQ5 -3,9732 -0,8307 10.1

f11 BOQ6 4,236 -0,8705 11

f12 COQ6 4,236 -0,8708 12.1

f13 BOQ7 -3,7581 -10,008 13

f14 COQN7 -3,9957 -0,9774 14.05

f15 BOQ8 -3,5436 -6,473 15.1

f16 COQ8 -4,0209 -0,83 16.1

f17 BOQ9 4,2359 -0,9567 17

f18 COQ9 4,2358 -1,066 18.2

f19 BOQ10 -3,938 -0,8202 19

f20 COQ10 -3,9652 -0,8207 20

f21 BOQ103 4,2352 -0,9752 20.99

f22 COQ103 -3,6747 -0,8012 22.02

f23 BOQ104 -3,868 -3,8562 23.1

f24 COQ104 -3,868 -3,8563 24.05

f25 BOQ105 3,9108 -4,7673 25

f26 COQ105 -3,8371 -1,1471 26

f27 BOQ106 -4,1335 -0,5057 26.98

f28 COQ106 -4,1336 -0,5066 28.1

f29 COQ107 -3,9429 -0,8897 29

f30 BOQ108 0,7821 -0,8047 30.02

f31 COQ108 -3,5723 -0,8226 31

f32 BCSQ1 1,1978 -116,873 32.1

f33 BESQ1 -3,6525 -4,0572 33.1

f34 CESQ1 4,236 -1,1124 34.05

f35 BCSQ2 4,3241 -3,7096 35

f36 BESQ2 -3,9472 -0,8389 35.9

f37 CESQ2 -4,0163 -0,8426 37

f38 BCSQ3 4,2143 -1,1517 38

f39 BESQ3 -3,9924 -1,1447 39.1

f40 BCSQ4 -3,9585 -0,8308 40

f41 BESQ4 -3,9923 -1,7371 41.1

f42 CESQ4 -3,9914 -0,8305 42

f43 BCSQ5 0,2217 -56,044 42.9

f44 CESQ5 1,3334 -66,861 44

f45 BCSQ6 -2,9332 -53,567 45.1

f46 BESQ6 4,2359 -0,8925 45.9

f47 CESQ6 -3,1548 -25,823 47

f48 BESQ7 4,2359 -0,8947 48

f49 BESQ8 -3,9367 -0,8228 49.1

f50 BCSQ9 -3,4253 -0,8481 50

f51 CESQ9 -4,1369 -0,8491 51

f52 BCSQ10 3,4321 -4,7524 52.05

f53 BESQ10 -4,096 -0,825 53

f54 CESQ10 2,1206 -15,167 54

f55 BCSQ101 -3,3445 -11,241 55

f56 BESQ101 -0,0297 -0,8869 56.2

f57 CESQ101 -3,0194 -16,107 57

f58 BCSQ102 -2,2499 -16,667 58

f59 BESQ102 4,2359 -0,9569 59.3

f60 CESQ102 -2,0382 -15,561 60

f61 BESQ103 -3,8677 -3,8572 61.05

f62 BCSQ104 4,236 -0,9716 62.1

f63 CESQ104 4,236 -0,9719 63

f64 BESQ105 -4,1347 -0,5416 64.2

f65 BCSQ106 3,4074 -4,7131 64.9

f66 CESQ106 4,2232 -4,8967 66

f67 BESQ107 -3,9367 -0,823 67.1

f68 BCSQ108 -4,2057 -0,8491 67.9

f69 BESQ108 4,1556 -3,0547 69

f70 CESQ108 -5 -6,6342 69.98

number of 
faults (detected/

injected)
55/70 60/70 70/70
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However, there were problems that arose that need to be 
resolved. These problems include 15% of faults escaping this 
test mode (f9, f10, f14, f20, f29, f39, f41, f42, f49, f67) and the 
indistinguishable detected faults constituting groups of ambigu-
ous faults such as (f11, f12, f62, f63), (f5, f39), (f23, f24), mak-
ing it more difficult to locate them. The data of this dictionary 
is processed via the FIS to provide solutions to these problems. 
These solutions have been detailed in the following sections.

D. Simulation Results
All hard faults have been obtained from the DC response 

and tabulated in Table I. The faults have been coded and can be 
identified through the following abbreviations: EOQn, BOQn, 
COQn, EBSQn, ECSQn, and BCSQn, where E, B, and C, re-
spectively, denote the emitter, the base, and the collector of the 
transistor, which can be identified by the letter Q and its posi-
tion number n in the configuration. From the simulation results 
(Table I), it can be seen that the output voltage and supply cur-
rent are different for different fault conditions. The extracted 
features are then fed as inputs into the FIS.

The FIS that has been suggested to solve the problem of 
fault detection and localization is shown in Figure 13. It has 
been created through three steps [3], which have been listed as 
follows: defining the input membership function (output volt-
age and supply current), defining the output membership func-
tions and, finally, creating the rule base.

Fig. 13.  Mamdani fuzzy inference system (two inputs).

The values of the input parameters are divided into different 
intervals according to different fault groups. After a number of 
experiments, this distribution has led to a suitable choice of 18 
intervals for the output voltage parameter (Figure 14) and 7 for 
the supply current parameter (Figure 15). Each value region un-
dergoes a transformation into linguistic parameters, which are 
provided as input in Madani’s FIS. We would like to remind 
that for each of these regions, a triangular membership function 
TMF is assigned.

Fig. 14.  Membership function of output voltage.

Fig. 15.  Membership function of supply current.

The output membership functions are also assigned to the 
output variables; the membership function is divided into ar-
eas, as shown in Figure 16, that characterize the different faults’ 
identities, which can be obtained using the fuzzy rule base. As 
there are 70 different configurations of the CUT in the fault dic-
tionary, there must be 70 fuzzy rules for the problem under con-
sideration. The fuzzy rule base defines the relationship between 
the input and the output fuzzy sets. As a result, the use of fuzzy 
IF-THEN rules imitates the ability of the human mind to make 
decisions [13]. Finally, the centroid defuzzification method was 
used on the fuzzy set “fault” to obtain a crisp value, which can 
be used to easily identify the faults. The output of the FIS for 
the given inputs is demonstrated in Figure 17.

Fig. 16.  Membership Function for Fault ID (display range [0 10]).

Fig. 17.  Output of the FIS.

The fault case F18 has been chosen to illustrate the ap-
proach. The FIS for index fault 18 (F18) is 4.2358, − 1.066. For 
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this input, the triangular membership functions (TMF) for the 
output voltage and supply current are 4.1, 4.23, 4.5 and     − 1.2, 
− 1, − 0.8, respectively.

The TMF for the output is defined as 17, 18, 19 by setting 
the fault index (in this case, 18) as the center of the TMF. The 
fuzzy rule for this fault has been provided as follows:

“If Vout is in the range 4.1 to 4.5 and Iin is in the range − 1.2 
to − 0.8, then the fault range is 17 to 19.”

The FIS output has a value of 18.2 after defuzzification 
whose rounded number corresponds to the defect index 18 as a 
fault identifier (fault ID).

To support the practicality of the approach, the results of 
some fault cases have been resumed in Table II and agree well 
within the corresponding fault ID.

The same applies to other faults where the input and output 
TMF are determined from the values of the output voltages and 
supply current and the fault index, respectively. 

The FIS outputs exhibited in Table I clearly indicate that the 
totality (100%) of faults being investigated in the present work 
have been detected and successfully dispatched to each other. 
This has been conducted on zero groups of ambiguous faults 
and, thus, will help in a good fault location.

To verify the efficiency of the method proposed in this pa-
per, Table III compares the fault coverage of the proposed meth-
od with that of the classical test method and an earlier method 
[16] using the time-mode simulation for the same circuit. The 
fault coverage is found to be 100% for the proposed technique, 
whereas for the classical testing and time-mode testing method, 
it is not more than 90%.

Table 3. Comparison of Fault Coverage for Proposed Method, 
an Earlier  Method [16] and Classical Test Methods.

Earlier 
method [16]

Classical test
Proposed 
methodOutput 

voltage
Supply cur-

rent

Fault coverage

 90%    78%     85% 100%

V. Conclusion

This paper applies fuzzy logic in the detection and localiza-
tion of hard faults in analog circuits in the DC domain.

The FIS can display the diagnostic result visually and di-
rectly. Moreover, the results presented in this research work are 
very conclusive, as 100% of the entire volume of faults being 
examined was detected using both DC supply current and out-
put voltage as the fault signature parameters.

Furthermore, applying the FIS approach as the fault classifi-
cation tool has led to more accurate fault location in comparison 
to the aforementioned approaches, as all the examined faults 
had been successfully dissociated from each other. 

This experiment indicates that this technique can quickly 

detect hard faults in analog circuits, as it requires one DC in-
put voltage (a single test vector) instead of an entire voltage 
range. Our future work will focus on expanding the proposed 
approach to other analog circuits.
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