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Abstract—Nowadays, the endlessly increasing demand for 
faster and complex integrated circuits (IC) has been fuelled by the 
scaling of metal-oxide-semiconductor field-effect-transistors 
(MOSFET) to smaller dimensions. The continued scaling of 
MOSFETs approaches its physical limits due to short-channel 
effects (SCE). Double-gate (DG) MOSFET is one of the promising 
alternatives as it offers better immunity towards SCEs and can be 
scaled to the shortest channel length. In future, ICs can be 
designed using DG-CMOS technology for which mathematical 
models depicting the electrical characteristics of the DG 
MOSFETs are foremost needed.  In this paper, a review on n-type 
symmetric DG MOSFETs models has been presented based on the 
analyses of electrostatic potential distribution, threshold voltage, 
and drain-current models. Mathematical derivations of the device 
models are described elaborately, and numerical simulations are 
also carried out to validate the replicability of models. 
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I. INTRODUCTION 

OR  more than five decades, the semiconductor industries 
have been successful in providing continuous system 

performance improvement because of the invention of 
MOSFETs. Prior to this, bulky vacuum tubes were used for 
systems, but reliability and heat dissipations were major 
issues [1]. Therefore, researchers tried to realize the vacuum 
tube in solid-state for which the surface of semiconductors was 
studied thoroughly. Lilienfeld first reported the idea of 
enhancing the surface conductance of a semiconductor by 
application of electric field in 1930, but it was not successful 
because of the presence of large densities of surface states  

[2]-[3]. The first MOSFET was fabricated in 1960 by Kahng 
and Atalla [4] on a silicon substrate using an oxide layer (SiO2) 
as the gate insulator. Circuits based on single polarity 
MOSFETs (either p- or n-type) suffered from large static power 
dissipation, thereby limited the level of integration in a chip. 
The breakthrough in the level of integration came in 1963 with 
the invention of complementary metal-oxide-semiconductor 
(CMOS) [5]. In CMOS technology, both the n- and p-type 
MOSFETs were constructed side by side on the same substrate, 
and are connected in series between the supply terminals, so 
that there is negligible static power dissipation. 

The prediction proclaimed by Moore’s law has been 
achieved through scaling of MOSFETs. One of the most 
important parameters of a MOSFET is its channel length (𝐿𝐿), 
defined as the distance between the source and drain. For a 
given technology, there is a minimum value of 𝐿𝐿 below which 
the gate starts to lose control of the drain current (𝐼𝐼𝑑𝑑𝑑𝑑). This is 
because of the physical limits imposed by non-scalability of 
silicon energy band-gap (𝐸𝐸𝑔𝑔), built-in potential (𝑉𝑉𝑏𝑏𝑏𝑏), short-
channel effects (SCEs), and thermal voltage (𝑉𝑉𝑇𝑇) [6]. 
Conventionally, MOSFETs were scaled with a scaling factor 𝑠𝑠, 
(𝑠𝑠 ≈ 0.7). Scaling by this factor reduces 𝐿𝐿 to 𝐿𝐿 × 𝑠𝑠, oxide 
thickness (𝑡𝑡𝑜𝑜𝑜𝑜) to 𝑡𝑡𝑜𝑜𝑜𝑜 × 𝑠𝑠, while it increases doping 
concentration (𝑁𝑁𝑑𝑑𝑏𝑏) to 𝑁𝑁𝑑𝑑𝑏𝑏/𝑠𝑠 [7]. But this technique cannot be 
continued in the sub-micron regime, because increasing 𝑁𝑁𝑑𝑑𝑏𝑏 
gives rise to mobility degradation of carriers and random dopant 
fluctuation (RDF) [7,8]. Mobility degradation occurs due to 
large vertical fields induced by high doping [9].  RDF is a form 
of process variation due to variation in the implanted dopants 
which alters the transistor’s properties, especially threshold 
voltage (𝑉𝑉𝑡𝑡ℎ) [10]. So it is utmost important to restore the gate 
control of the channel without increasing doping concentration 
of the body. This requirement has led to creating multi-gate 
(MG) MOSFETs in which body of the device is undoped (or 
lightly doped). Fig.1 shows some examples of MG MOSFETs 
where the gate is wrapped around the body from either two or 
three or four sides. 

On decreasing the 𝐿𝐿, depletion region created by the source 
and drain encroaches horizontally in the channel, thereby 
reduces the effective channel length [11]. As the drain-to-
source voltage (𝑉𝑉𝑑𝑑𝑑𝑑) increases the depletion region becomes 
wider. As a result, the channel electrostatics is not only 
controlled by the gate but also influenced by 𝐿𝐿 and 𝑉𝑉𝑑𝑑𝑑𝑑. The 
observable effects arising due to loss of channel electrostatics 
controlled by the gate are termed as SCEs. The SCEs include 
the 𝑉𝑉𝑡𝑡ℎ roll-off due to the 𝐿𝐿 reduction, and the drain-induced 
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barrier lowering (DIBL). These effects cause the 𝑉𝑉𝑡𝑡ℎ to decrease 
upon increasing 𝑉𝑉𝑑𝑑𝑑𝑑 and also degrades subthreshold slope (𝑆𝑆𝑆𝑆). 
Improvement of SCEs by using double-gate architecture was 
predicted in 1984, which put forward the concept of double-
gate (DG) MOSFET [12]. The DG MOSFET is being studied 
as a key component for future ICs due to its numerous 
advantages such as excellent gate controllability and 
improvements in 𝑉𝑉𝑡𝑡ℎ roll-off, off-state leakage current and 
channel length modulation (CLM) effects. The undoped body 
makes the device immune to RDF, leading to a consistency in 
the 𝑉𝑉𝑡𝑡ℎ from device to device [8]. Due to the undoped body, 
depletion charge is negligible, which enhances the carrier 
mobility [13]. The channel inversion takes place throughout the 
thickness of the body and consequently increases the minority 
carriers due to which higher current is found [14]. Junction 
capacitance and mobility degradation are reduced due to which 
switching speed of the device is improved [13]. Surface 
roughness scattering due to lower surface electric field is also 
reduced because of the undoped body [13,14]. 

All IC designs, digital or analog or mixed-signal, are 
verified through the use of circuit simulators before being 
reproduced in real silicon. For any circuit simulator to predict 
the performance of the ICs based on DG-CMOS technology, it 
should have accurate models to describe the behaviour of the 
constituting DG MOSFETs. The device model is a 
representation of characteristics or conditions in the device in 
the form of (a) an equation, (b) an equivalent circuit, and (c) a 

table, together with the proper reasoning and assumptions. 
Primary requirements to use a device in the simulators are 
electrostatic potential distribution (𝜙𝜙) model,  𝑉𝑉𝑡𝑡ℎ model, and  
𝐼𝐼𝑑𝑑𝑑𝑑 model. Several such models have been reported so far 
regarding the modeling of n-type DG MOSFETs [15−45]. A 
brief review on modeling of DG MOSFETs has been presented 
in [46,47] but the models for short-channel (nanoscale) regimes 
have not been considered. 

Taur [15] developed a 𝜙𝜙 model for long-channel undoped 
DG MOSFETs where two transcendental equations had to be 
solved in order to describe the potential distribution in the 
channel. The need for solving the two equations was removed 
in the model given by Lu and Taur [16], and thus provided only 
one equation for potential distribution which in turns required 
numerical iteration method to get the solution. Hong et al. [17] 
had proposed the 𝜙𝜙 model for a long-channel lightly doped DG 
MOSFETs by considering the effects of fixed as well as mobile 
charge carriers. Taur [15] had also given a 𝑉𝑉𝑡𝑡ℎ criterion for 
long-channel DG MOSFETs in which iterative method was 
used to calculate the 𝑉𝑉𝑡𝑡ℎ which was later improved by Chen et 
al. [18] by proposing a new definition for 𝑉𝑉𝑡𝑡ℎ. Based on the 
models [15, 16], Taur et al. [19] had given a 𝐼𝐼𝑑𝑑𝑑𝑑 model for long-
channel DG MOSFETs which had three different equations for 
subthreshold, linear, and saturation regions. Tsormpatzoglou et 
al. [20] presented the 𝜙𝜙 model for short-channel DG MOSFETs 
based on the parabolic potential approximation method [48] and 
also presented a semi-analytical model for subthreshold drain 
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Fig. 1.  Different types of MG MOSFETs (a) DG MOSFET, (b) gate-all-around MOSFET, (c) finFET, (d) tri-gate MOSFET, (e) Π-gate MOSFET, (f) Ω-
gate MOSFET 
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current. Later, the 𝜙𝜙 model [20] was adopted to model the 𝑉𝑉𝑡𝑡ℎ 
in [21] and 𝐼𝐼𝑑𝑑𝑑𝑑 in [22, 23] for short-channel DG MOSFETs. 
Recently, Taur and Lin [24] have modified the model [19] by 
proposing the 𝐼𝐼𝑑𝑑𝑑𝑑 model for short-channel DG MOSFETs.   

In this paper, symmetric n-type DG MOSFET 
models [15−24] have been reviewed along with their detailed 
derivations for long and short-channel based on available 
parameters like 𝜙𝜙, 𝑉𝑉𝑡𝑡ℎ, and 𝐼𝐼𝑑𝑑𝑑𝑑. MATLAB code has been 
presented to demonstrate the semi-analytical modeling given in 
[20]. At the end, the models [20−23] are adopted to implement 
n-type DG MOSFET in 30-nm using Verilog-A code [49]. The 
remaining part of the paper is organized as follows. Section 2 
describes the models for long-channel DG MOSFETs in three 
categories: 1) 𝜙𝜙 models, 2) 𝑉𝑉𝑡𝑡ℎ models, and 3) 𝐼𝐼𝑑𝑑𝑑𝑑 models. 
Section 3 presents the models for short-channel DG MOSFETs 
along with MATLAB and Spectre simulations. Section 4 
concludes the paper. 

II. MODELS FOR LONG CHANNEL DG MOSFETS 

A. Electrostatic Potential Models 
The electrostatic potential of a long-channel DG 

MOSFET 𝜙𝜙(𝑥𝑥) is one-dimensional (1-D), which is obtained by 
solving the 1-D Poisson’s equation governing the relationship 
between electric fields and charges. As shown in Fig. 2, 𝜙𝜙(𝑥𝑥) 
is a function of the distance (𝑥𝑥) from the gate towards the 
channel. The 𝜙𝜙(𝑥𝑥) models including Taur’s [15], and Lu and 
Taur’s [16] for 𝐿𝐿 = 1µm have been considered for the 
derivation and analysis of 𝑉𝑉𝑡𝑡ℎ and 𝐼𝐼𝑑𝑑𝑑𝑑 models necessary for 
designing the complete device model for DG MOSFETs. 

 
1) Taur’s Model [15]:  
The 𝜙𝜙(𝑥𝑥) model for an undoped n-type DG MOSFET is 

derived by considering only the mobile charge density. This is 
a core model for 𝐿𝐿 =1 µm regime obtained by solving the 1-D 
Poisson’s equation under gradual channel approxima-
tion (GCA) [50] assuming Boltzmann statistics for mobile 
charges. The GCA assumes that variation in lateral electric field 

much less than the variation in the vertical electric field (along 
𝑥𝑥) so that the 2-D Poisson’s equation reduces to 1-D [51]. 
Finally, the 𝜙𝜙(𝑥𝑥) model is expressed as: 

𝜙𝜙(𝑥𝑥) = 𝜙𝜙0 − 2𝑉𝑉𝑇𝑇 ln [cos(√
𝑞𝑞𝑛𝑛𝑖𝑖

2𝜖𝜖𝑑𝑑𝑖𝑖𝑉𝑉𝑇𝑇
𝑒𝑒
𝜙𝜙0
2𝑉𝑉𝑇𝑇𝑥𝑥)] (1) 

where 𝜙𝜙0 ≡ 𝜙𝜙(𝑥𝑥 = 0), 𝑉𝑉𝑇𝑇 is the thermal voltage, 𝑛𝑛𝑖𝑖 is the 
intrinsic charge density, and 𝜀𝜀𝑑𝑑𝑖𝑖 is the dielectric permittivity of 
silicon. 𝜙𝜙(𝑥𝑥) is also defined as the amount of band bending or 
position of intrinsic potential at 𝑥𝑥 [51]. A similar form of 
solution (1) was earlier given by Hauser and Littlejohn [52]. 
Derivation of the model (1) is as follows. 

The 1-D Poisson's equation for the silicon region considering 
only mobile charge density is expressed as: 

𝑑𝑑2𝜙𝜙(𝑥𝑥)
𝑑𝑑𝑥𝑥2 = 𝑞𝑞

𝜀𝜀𝑠𝑠𝑠𝑠
𝑛𝑛𝑖𝑖𝑒𝑒

𝑞𝑞𝜙𝜙(𝑥𝑥)
𝑘𝑘𝑏𝑏𝑇𝑇  , (2) 

where 𝑞𝑞 is the elementary charge, 𝑘𝑘𝑏𝑏 is the Boltzmann constant, 
and 𝑇𝑇 is the temperature. By interpreting in terms of 𝑑𝑑𝜙𝜙 and 
integrating both sides, (2) can be rewritten as: 

∫
𝑑𝑑𝜙𝜙
𝑑𝑑𝑥𝑥
0 (𝑑𝑑𝜙𝜙𝑑𝑑𝑥𝑥)𝑑𝑑 (

𝑑𝑑𝜙𝜙
𝑑𝑑𝑥𝑥) = ∫𝜙𝜙(𝑥𝑥)𝜙𝜙0

𝑞𝑞
𝜀𝜀𝑠𝑠𝑠𝑠
𝑛𝑛𝑖𝑖𝑒𝑒

𝑞𝑞𝜙𝜙
𝑘𝑘𝑏𝑏𝑇𝑇𝑑𝑑𝜙𝜙 . (3) 

On solving (3):  

(𝑑𝑑𝜙𝜙𝑑𝑑𝑥𝑥) = √2𝑘𝑘𝑏𝑏𝑇𝑇𝑛𝑛𝑠𝑠
𝜀𝜀𝑠𝑠𝑠𝑠

(𝑒𝑒
𝑞𝑞𝜙𝜙(𝑥𝑥)
𝑘𝑘𝑏𝑏𝑇𝑇 − 𝑒𝑒

𝑞𝑞𝜙𝜙0
𝑘𝑘𝑏𝑏𝑇𝑇) . (4) 

Integrating both sides of (4):  

∫𝜙𝜙(𝑥𝑥)𝜙𝜙0
𝑑𝑑𝜙𝜙

√𝑒𝑒
𝑞𝑞𝜙𝜙(𝑥𝑥)
𝑘𝑘𝑏𝑏𝑇𝑇 −𝑒𝑒

𝑞𝑞𝜙𝜙0
𝑘𝑘𝑏𝑏𝑇𝑇

= √2𝑘𝑘𝑏𝑏𝑇𝑇𝑛𝑛𝑠𝑠
𝜀𝜀𝑠𝑠𝑠𝑠

∫𝑥𝑥0 𝑑𝑑𝑥𝑥 . (5) 

Considering 𝑒𝑒
𝑞𝑞𝜙𝜙(𝑥𝑥)
𝑘𝑘𝑏𝑏𝑇𝑇 − 𝑒𝑒

𝑞𝑞𝜙𝜙0
𝑘𝑘𝑏𝑏𝑇𝑇 = 𝑡𝑡  will imply: 

 

𝑒𝑒
𝑞𝑞𝜙𝜙(𝑥𝑥)
𝑘𝑘𝑏𝑏𝑇𝑇 = 𝑡𝑡 + 𝑒𝑒

𝑞𝑞𝜙𝜙0
𝑘𝑘𝑏𝑏𝑇𝑇 . 

(6) 

Differentiaing (6) with respect to 𝜙𝜙:  

𝑑𝑑
𝑑𝑑𝜙𝜙 𝑒𝑒

𝑞𝑞𝜙𝜙
𝑘𝑘𝑏𝑏𝑇𝑇 = 𝑑𝑑𝑡𝑡

𝑑𝑑𝜙𝜙 =
𝑞𝑞

𝑘𝑘𝑏𝑏𝑇𝑇
𝑒𝑒

𝑞𝑞𝜙𝜙
𝑘𝑘𝑏𝑏𝑇𝑇 . (7) 

Rearranging the terms of (7):   

𝑑𝑑𝜙𝜙 = 𝑘𝑘𝑏𝑏𝑇𝑇
𝑞𝑞 𝑒𝑒

−𝑞𝑞𝜙𝜙
𝑘𝑘𝑏𝑏𝑇𝑇𝑑𝑑𝑡𝑡 = 𝑘𝑘𝑏𝑏𝑇𝑇

𝑞𝑞
𝑑𝑑𝑡𝑡

(𝑡𝑡+𝑒𝑒
𝑞𝑞𝜙𝜙0
𝑘𝑘𝑏𝑏𝑇𝑇)

. 
(8) 

Substituiting (8) and (6) in (5) will yield:  

∫𝑡𝑡0
𝑑𝑑𝑡𝑡

√𝑡𝑡(𝑡𝑡+𝑒𝑒
𝑞𝑞𝜙𝜙0
𝑘𝑘𝑏𝑏𝑇𝑇)

= √2𝑞𝑞2𝑛𝑛𝑠𝑠
𝜀𝜀𝑠𝑠𝑠𝑠𝑘𝑘𝑏𝑏𝑇𝑇

∫𝑥𝑥0 𝑑𝑑𝑥𝑥. 
(9) 

Considering √𝑡𝑡 = 𝑧𝑧 in (9) and substituting 𝑑𝑑𝑡𝑡 =
2𝑧𝑧𝑑𝑑𝑧𝑧 in (9) will imply: 
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Fig. 2. The cross-sectional view of a long-channel n-type symmetric DG 
MOSFET along with the geometrical coordinates. 
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∫ 2𝑑𝑑𝑑𝑑

(𝑑𝑑2+𝑒𝑒
𝑞𝑞𝜙𝜙0
𝑘𝑘𝑏𝑏𝑇𝑇)

= √2𝑞𝑞2𝑛𝑛𝑖𝑖
𝜀𝜀𝑠𝑠𝑖𝑖𝑘𝑘𝑏𝑏𝑇𝑇

𝑥𝑥.  (10) 

2

𝑒𝑒
𝑞𝑞𝜙𝜙0
2𝑘𝑘𝑏𝑏𝑇𝑇

tan−1 ( 𝑑𝑑

𝑒𝑒
𝑞𝑞𝜙𝜙0
2𝑘𝑘𝑏𝑏𝑇𝑇

) = √2𝑞𝑞2𝑛𝑛𝑖𝑖
𝜀𝜀𝑠𝑠𝑖𝑖𝑘𝑘𝑏𝑏𝑇𝑇

𝑥𝑥.  (11) 

𝑧𝑧 = 𝑒𝑒
𝑞𝑞𝜙𝜙0
2𝑘𝑘𝑏𝑏𝑇𝑇tan (√ 𝑞𝑞2𝑛𝑛𝑖𝑖

2𝜀𝜀𝑠𝑠𝑖𝑖𝑘𝑘𝑏𝑏𝑇𝑇
𝑒𝑒

𝑞𝑞𝜙𝜙0
2𝑘𝑘𝑏𝑏𝑇𝑇𝑥𝑥).  (12) 

𝑡𝑡 = 𝑒𝑒
𝑞𝑞𝜙𝜙0
𝑘𝑘𝑏𝑏𝑇𝑇tan2 (√ 𝑞𝑞2𝑛𝑛𝑖𝑖

2𝜀𝜀𝑠𝑠𝑖𝑖𝑘𝑘𝑏𝑏𝑇𝑇
𝑒𝑒

𝑞𝑞𝜙𝜙0
2𝑘𝑘𝑏𝑏𝑇𝑇𝑥𝑥).  (13) 

𝑒𝑒
𝑞𝑞𝜙𝜙(𝑥𝑥)
𝑘𝑘𝑏𝑏𝑇𝑇 − 𝑒𝑒

𝑞𝑞𝜙𝜙0
𝑘𝑘𝑏𝑏𝑇𝑇 = 𝑒𝑒

𝑞𝑞𝜙𝜙0
𝑘𝑘𝑏𝑏𝑇𝑇tan2 (√ 𝑞𝑞2𝑛𝑛𝑖𝑖

2𝜀𝜀𝑠𝑠𝑖𝑖𝑘𝑘𝑏𝑏𝑇𝑇
𝑒𝑒

𝑞𝑞𝜙𝜙0
2𝑘𝑘𝑏𝑏𝑇𝑇𝑥𝑥).  (14) 

𝑒𝑒
𝑞𝑞𝜙𝜙(𝑥𝑥)
𝑘𝑘𝑏𝑏𝑇𝑇 = 𝑒𝑒

𝑞𝑞𝜙𝜙0
𝑘𝑘𝑏𝑏𝑇𝑇 [1 + tan2 (√ 𝑞𝑞2𝑛𝑛𝑖𝑖

2𝜀𝜀𝑠𝑠𝑖𝑖𝑘𝑘𝑏𝑏𝑇𝑇
𝑒𝑒

𝑞𝑞𝜙𝜙0
2𝑘𝑘𝑏𝑏𝑇𝑇𝑥𝑥)].  (15) 

Rearranging terms of (15) : 

𝑒𝑒
𝑞𝑞(𝜙𝜙(𝑥𝑥)−𝜙𝜙0)

𝑘𝑘𝑏𝑏𝑇𝑇 = sec2 (√ 𝑞𝑞2𝑛𝑛𝑖𝑖
2𝜀𝜀𝑠𝑠𝑖𝑖𝑘𝑘𝑏𝑏𝑇𝑇

𝑒𝑒
𝑞𝑞𝜙𝜙0
2𝑘𝑘𝑏𝑏𝑇𝑇𝑥𝑥).  (16) 

𝑞𝑞(𝜙𝜙(𝑥𝑥)−𝜙𝜙0)
𝑘𝑘𝑏𝑏𝑇𝑇

= 2ln (sec [√ 𝑞𝑞2𝑛𝑛𝑖𝑖
2𝜀𝜀𝑠𝑠𝑖𝑖𝑘𝑘𝑏𝑏𝑇𝑇

𝑒𝑒
𝑞𝑞𝜙𝜙0
2𝑘𝑘𝑏𝑏𝑇𝑇𝑥𝑥]).  (17) 

𝜙𝜙(𝑥𝑥) = 𝜙𝜙0 −
2𝑘𝑘𝑏𝑏𝑇𝑇
𝑞𝑞 ln [cos (√ 𝑞𝑞2𝑛𝑛𝑖𝑖

2𝜀𝜀𝑠𝑠𝑖𝑖𝑘𝑘𝑏𝑏𝑇𝑇
𝑒𝑒

𝑞𝑞𝜙𝜙0
2𝑘𝑘𝑏𝑏𝑇𝑇𝑥𝑥)].  (18) 

Since, 𝑘𝑘𝑏𝑏𝑇𝑇𝑞𝑞 = 𝑉𝑉𝑇𝑇 so substituting 𝑉𝑉𝑇𝑇 will finally give the 𝜙𝜙(𝑥𝑥) 
model (1). 
 

2) Lu and Taur Model [16]:  

This model extended the model [15] by considering quasi-
Fermi potential (𝜙𝜙𝐹𝐹) in (1). 𝜙𝜙𝐹𝐹 is the potential difference 
between electron and hole quasi-Fermi levels along the channel 
𝜙𝜙𝐹𝐹 = 𝜑𝜑𝐹𝐹𝑛𝑛 − 𝜑𝜑𝐹𝐹𝐹𝐹. In short, 𝜙𝜙𝐹𝐹 is the voltage drop in the channel 
whose value ranges from 𝜙𝜙𝐹𝐹 = 0 at source to 𝑉𝑉𝑑𝑑𝑑𝑑 at the drain. 
Considering this 𝜙𝜙𝐹𝐹 in equation (2), the 1-D Poisson’s equation 
is expressed as:  

𝑑𝑑2𝜙𝜙(𝑥𝑥)
𝑑𝑑𝑥𝑥2 = 𝑞𝑞

𝜀𝜀𝑠𝑠𝑖𝑖
𝑛𝑛𝑖𝑖𝑒𝑒

𝑞𝑞(𝜙𝜙(𝑥𝑥)−𝜙𝜙𝐹𝐹)
𝑘𝑘𝑏𝑏𝑇𝑇 . 

Inclusion of the 𝜙𝜙𝐹𝐹will transform the model (18) 
as:  

(19) 

𝜙𝜙(𝑥𝑥) − 𝜙𝜙𝐹𝐹 =  

𝜙𝜙0 − 𝜙𝜙𝐹𝐹 −
2𝑘𝑘𝑏𝑏𝑇𝑇
𝑞𝑞 ln [cos (√ 𝑞𝑞2𝑛𝑛𝑖𝑖

2𝜀𝜀𝑠𝑠𝑖𝑖𝑘𝑘𝑏𝑏𝑇𝑇
𝑒𝑒
𝑞𝑞(𝜙𝜙0−𝜙𝜙𝐹𝐹)

2𝑘𝑘𝑏𝑏𝑇𝑇 𝑥𝑥)].  
(20) 

A parameter 𝛽𝛽 has been introduced, which is a function of 
𝜙𝜙𝐹𝐹but independent of 𝑥𝑥 [53]. 

𝛽𝛽 = 𝑡𝑡𝑠𝑠𝑖𝑖
2 √

𝑞𝑞2𝑛𝑛𝑖𝑖
2𝜀𝜀𝑠𝑠𝑖𝑖𝑘𝑘𝑏𝑏𝑇𝑇

𝑒𝑒
𝑞𝑞(𝜙𝜙0−𝜙𝜙𝐹𝐹)

2𝑘𝑘𝑏𝑏𝑇𝑇 .  (21) 

Rearranging the terms in (21):   

𝜙𝜙0 − 𝜙𝜙𝐹𝐹 =
2𝑘𝑘𝑏𝑏𝑇𝑇
𝑞𝑞 ln [2𝛽𝛽𝑡𝑡𝑠𝑠𝑖𝑖 √

2𝜀𝜀𝑠𝑠𝑖𝑖𝑘𝑘𝑏𝑏𝑇𝑇
𝑞𝑞2𝑛𝑛𝑖𝑖

].  (22) 

  

On substituting (22) in (20) will yield:   

𝜙𝜙(𝑥𝑥) = 𝜙𝜙𝐹𝐹 −
2𝑘𝑘𝑏𝑏𝑇𝑇
𝑞𝑞 ln [𝑡𝑡𝑠𝑠𝑖𝑖2𝛽𝛽 √

𝑞𝑞2𝑛𝑛𝑖𝑖
2𝜀𝜀𝑠𝑠𝑖𝑖𝑘𝑘𝑏𝑏𝑇𝑇

cos (2𝛽𝛽𝑡𝑡𝑠𝑠𝑖𝑖 𝑥𝑥)].  (23) 

The surface potential at 𝑥𝑥 = 𝑡𝑡𝑑𝑑𝑖𝑖/2 [Fig. 2] is expressed as: 

𝜙𝜙𝑑𝑑 ≡ 𝜙𝜙 (𝑥𝑥 = 𝑡𝑡𝑠𝑠𝑖𝑖
2 ) =  

𝜙𝜙𝐹𝐹 −
2𝑘𝑘𝑏𝑏𝑇𝑇
𝑞𝑞 ln [𝑡𝑡𝑠𝑠𝑖𝑖2𝛽𝛽 √

𝑞𝑞2𝑛𝑛𝑖𝑖
2𝜀𝜀𝑠𝑠𝑖𝑖𝑘𝑘𝑏𝑏𝑇𝑇

cos (2𝛽𝛽𝑡𝑡𝑠𝑠𝑖𝑖 𝑥𝑥)].  
(24) 

Equation (23) is the 𝜙𝜙(𝑥𝑥)  model given by Lu and Taur 
which has been taken by many research groups [22−23], 
[33−34] to model the short-channel DG MOSFET 
characteristics. Applying boundary condition at silicon-oxide 
interface: 

𝜀𝜀𝑜𝑜𝑥𝑥
𝑉𝑉𝑔𝑔−∆𝜒𝜒𝑚𝑚𝑠𝑠−𝜙𝜙𝑠𝑠

𝑡𝑡𝑜𝑜𝑥𝑥
= 𝜀𝜀𝑑𝑑𝑖𝑖

𝑑𝑑𝜙𝜙
𝑑𝑑𝑥𝑥|𝑥𝑥=𝑡𝑡𝑠𝑠𝑖𝑖2

,  (25) 

where 𝑉𝑉𝑔𝑔 is the applied gate voltage and ∆𝜒𝜒𝑚𝑚𝑑𝑑 is the work-
function difference between the gates and the silicon as shown 
in Fig. 3. In case of undoped body ∆𝜒𝜒𝑚𝑚𝑑𝑑 = 0 for mid-gap metal 
gate, −𝐸𝐸𝑔𝑔/2𝑞𝑞 for n+ polysilicon, and 𝐸𝐸𝑔𝑔/2𝑞𝑞 for p+ polysilicon. 
Differentiating (23) with respect to 𝑥𝑥: 

𝑑𝑑𝜙𝜙
𝑑𝑑𝑥𝑥 =

−2𝑉𝑉𝑇𝑇
𝑡𝑡𝑠𝑠𝑖𝑖
2𝛽𝛽√

𝑞𝑞2𝑛𝑛𝑖𝑖
2𝜀𝜀𝑠𝑠𝑖𝑖𝑘𝑘𝑏𝑏𝑇𝑇

[−sin2𝛽𝛽𝑡𝑡𝑠𝑠𝑖𝑖
𝑥𝑥]2𝛽𝛽𝑡𝑡𝑠𝑠𝑖𝑖

𝑡𝑡𝑠𝑠𝑖𝑖
2𝛽𝛽√

𝑞𝑞2𝑛𝑛𝑖𝑖
2𝜀𝜀𝑠𝑠𝑖𝑖𝑘𝑘𝑏𝑏𝑇𝑇

cos2𝛽𝛽𝑡𝑡𝑠𝑠𝑖𝑖
𝑥𝑥

= 2𝑉𝑉𝑇𝑇
2𝛽𝛽
𝑡𝑡𝑠𝑠𝑖𝑖
tan (2𝛽𝛽𝑡𝑡𝑠𝑠𝑖𝑖 𝑥𝑥).  

𝑑𝑑𝜙𝜙
𝑑𝑑𝑥𝑥|𝑥𝑥=𝑡𝑡𝑠𝑠𝑖𝑖2

= 2𝑉𝑉𝑇𝑇
2𝛽𝛽
𝑡𝑡𝑠𝑠𝑖𝑖
tan𝛽𝛽.  (26) 

Substituting (24) and (26) in (25):  

Mid-gap 
metal gate

N+ 
Polysilicon

P+ 
Polysilicon

Vacuum level

Metal Oxide Semiconductor

qχm

qχ 
qχs Ev

Ei

Ef

Ec

Efm

Efn+

Efp+

Eg

ΦB

Fig. 3. Fermi-energy levels (Efn+, Efp+, and Efm) of n+, p+ polysilicon, and mid-
gap metal gate. Eg is the energy band-gap of semiconductor.𝜒𝜒 is the electron-
affinity of the semiconductor. 𝜒𝜒𝑚𝑚 and 𝜒𝜒𝑑𝑑 are the work-functions of mid-gap 
metal gate and semiconductor, respectively.  
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𝑉𝑉𝑔𝑔−∆𝜒𝜒𝑚𝑚𝑚𝑚−𝜙𝜙𝐹𝐹
2𝑉𝑉𝑇𝑇

− ln [ 2
𝑡𝑡𝑚𝑚𝑠𝑠

√2𝜀𝜀𝑚𝑚𝑠𝑠𝑘𝑘𝑏𝑏𝑇𝑇
𝑞𝑞2𝑛𝑛𝑠𝑠

] =  

ln 𝛽𝛽 − ln cos 𝛽𝛽 + 2𝑟𝑟𝛽𝛽 tan 𝛽𝛽, 
(27) 

with  𝑟𝑟 = 𝜀𝜀𝑚𝑚𝑠𝑠𝑡𝑡𝑜𝑜𝑜𝑜
𝜀𝜀𝑜𝑜𝑜𝑜𝑡𝑡𝑚𝑚𝑠𝑠

. The value of 𝛽𝛽 has to be calculated from (27) 
using numerical iterations like Newton-Raphson method [54]. 
Numerical iteration and algorithms increase the computation 
time. Fast and efficient method has to be adopted to make the 
model suitable for circuit simulation. Yu et al. [25] developed 
a computation method which eliminated the need for numerical 
iterations. 

3) Hong et al. [17]:  

The 𝜙𝜙(𝑥𝑥) models of DG MOSFETs developed in [15, 16] 
are valid for the undoped silicon body. The work has been 
extended by Hong et al. [17] by proposed the 𝜙𝜙(𝑥𝑥) model for 
the lightly doped silicon body with spatially varying doping 
profiles. The 𝜙𝜙(𝑥𝑥) model derived through solving the 1-D 
Poisson’s equation considering both the fixed and mobile 
charge density.  

𝑑𝑑2𝜙𝜙(𝑥𝑥)
𝑑𝑑𝑥𝑥2 = 𝑞𝑞𝑛𝑛𝑠𝑠

2

𝜀𝜀𝑚𝑚𝑠𝑠𝑁𝑁𝑚𝑚𝑠𝑠
𝑒𝑒

𝑞𝑞(𝜙𝜙(𝑜𝑜)−𝜙𝜙𝐹𝐹)
𝑘𝑘𝑏𝑏𝑇𝑇 + 𝑞𝑞𝑁𝑁𝑚𝑚𝑠𝑠(𝑥𝑥)

𝜀𝜀𝑚𝑚𝑠𝑠
, (28) 

where 𝑁𝑁𝑠𝑠𝑠𝑠(𝑥𝑥) is the spatially varying doping distribution in the 
silicon body (can be continuous or discrete). Consideration of 
fixed and mobile charge density in a lightly-doped silicon body 
is required from the accuracy point of view [31,32]. Because, 
the effect of mobile charge density cannot neglected in the 
above subthreshold regime [33] and its inclusion in Poisson’s 
equation enhances the model accuracy [55]. Substituting 
𝑞𝑞𝑁𝑁𝑚𝑚𝑠𝑠(𝑥𝑥)

𝜀𝜀𝑚𝑚𝑠𝑠
= 𝑑𝑑2𝑔𝑔(𝑥𝑥)

𝑑𝑑𝑥𝑥2 , (28) can be written as: 

𝜙𝜙(𝑥𝑥) = 𝑘𝑘𝑏𝑏𝑇𝑇
𝑞𝑞 𝑍𝑍(𝑥𝑥) + 𝜙𝜙𝐹𝐹 + 𝑔𝑔(𝑥𝑥).  (29) 

Differentiating (29) twice with respect to 𝑥𝑥: 
𝑑𝑑2𝜙𝜙(𝑥𝑥)

𝑑𝑑𝑥𝑥2 = 𝑘𝑘𝑏𝑏𝑇𝑇
𝑞𝑞

𝑑𝑑2𝑍𝑍(𝑥𝑥)
𝑑𝑑𝑥𝑥2 + 𝑑𝑑2𝑔𝑔(𝑥𝑥)

𝑑𝑑𝑥𝑥2 .  (30) 

Substituting (30) in (28) will yield: 

𝑘𝑘𝑏𝑏𝑇𝑇
𝑞𝑞

𝑑𝑑2𝑍𝑍(𝑥𝑥)
𝑑𝑑𝑥𝑥2 + 𝑑𝑑2𝑔𝑔(𝑥𝑥)

𝑑𝑑𝑥𝑥2 = 𝑞𝑞𝑛𝑛𝑠𝑠
2

𝜀𝜀𝑚𝑚𝑠𝑠𝑁𝑁𝑚𝑚𝑠𝑠
𝑒𝑒

𝑞𝑞
𝑘𝑘𝑏𝑏𝑇𝑇(𝑘𝑘𝑏𝑏𝑇𝑇

𝑞𝑞 𝑍𝑍(𝑥𝑥)+𝑔𝑔(𝑥𝑥)) + 𝑞𝑞𝑁𝑁𝑚𝑚𝑠𝑠(𝑥𝑥)
𝜀𝜀𝑚𝑚𝑠𝑠

,  

which on  solving will yield: 

𝑑𝑑2𝑍𝑍(𝑥𝑥)
𝑑𝑑𝑥𝑥2 = 𝑞𝑞2𝑛𝑛𝑠𝑠

2

𝑘𝑘𝑏𝑏𝑇𝑇𝜀𝜀𝑚𝑚𝑠𝑠
𝑒𝑒𝑍𝑍(𝑥𝑥) 𝑒𝑒

𝑞𝑞
𝑘𝑘𝑏𝑏𝑇𝑇𝑔𝑔(𝑜𝑜)

𝑁𝑁𝑚𝑚𝑠𝑠
 . (31) 

Substituting 𝐸𝐸𝑥𝑥𝐸𝐸 [ 𝑞𝑞
𝑘𝑘𝑏𝑏𝑇𝑇 𝑔𝑔(𝑥𝑥)] /𝑁𝑁𝑠𝑠𝑠𝑠 = 𝑓𝑓(𝑥𝑥) and 𝑞𝑞2𝑛𝑛𝑠𝑠

2

𝑘𝑘𝑏𝑏𝑇𝑇𝜀𝜀𝑚𝑚𝑠𝑠
= 𝜉𝜉, 

(31) is re-written as: 
𝑑𝑑2𝑍𝑍(𝑥𝑥)

𝑑𝑑𝑥𝑥2 = 𝜉𝜉𝑒𝑒𝑍𝑍(𝑥𝑥)𝑓𝑓(𝑥𝑥) . (32) 

The terms 𝜉𝜉 and 𝑓𝑓(𝑥𝑥) in (32) contain the effect of nonlinear 
coupling between the mobile and fixed charge densities. 
Presence of the 𝑓𝑓(𝑥𝑥) makes this modeling scheme unique from 
the exiting 𝜙𝜙(𝑥𝑥) model [56] for the DG MOSFET. In order to 

derive the analytical solution for 𝜙𝜙(𝑥𝑥), the (32) (in Cartesian 
coordinate) is transformed into the cylindrical coordinate. 

𝑑𝑑2𝑍𝑍𝐶𝐶(𝜏𝜏)
𝑑𝑑𝜏𝜏2 + 1

𝜏𝜏
𝑑𝑑𝑍𝑍𝑐𝑐(𝜏𝜏)

𝑑𝑑𝜏𝜏 = 𝜉𝜉𝑒𝑒𝑍𝑍𝑐𝑐(𝜏𝜏)𝐹𝐹(𝜏𝜏) , (33) 

where 𝑍𝑍𝑐𝑐(𝜏𝜏) = 𝑍𝑍(𝑥𝑥) − 2, ln 𝜏𝜏 = 𝑥𝑥, and 𝐹𝐹(𝜏𝜏) = 𝑓𝑓(𝑙𝑙𝑙𝑙 𝜏𝜏). In 
order to solve (32), two new variables are introduced: 𝛽𝛽 = 𝜏𝜏 𝑑𝑑𝑍𝑍𝐶𝐶

𝑑𝑑𝜏𝜏  
and 𝜂𝜂 = 𝜏𝜏2𝐹𝐹(𝜏𝜏)𝑒𝑒𝑍𝑍𝑐𝑐(𝜏𝜏). Differentiating 𝛽𝛽 with respect to 𝜏𝜏 will 
yield: 

𝑑𝑑𝛽𝛽
𝑑𝑑𝜏𝜏 = 𝑑𝑑𝑍𝑍𝐶𝐶(𝜏𝜏)

𝑑𝑑𝜏𝜏 + 𝜏𝜏 𝑑𝑑2𝑍𝑍𝐶𝐶(𝜏𝜏)
𝑑𝑑𝜏𝜏2  . (34) 

Substituting 𝑑𝑑
2𝑍𝑍𝐶𝐶(𝜏𝜏)
𝑑𝑑𝜏𝜏2  from (34) in (33): 

𝑑𝑑𝛽𝛽
𝑑𝑑𝜏𝜏 = 𝜏𝜏𝜉𝜉𝑒𝑒𝑍𝑍𝑐𝑐(𝜏𝜏)𝐹𝐹(𝜏𝜏) . (35) 

Differentiating 𝜂𝜂 with respect to 𝜏𝜏 will yield: 

𝑑𝑑𝜂𝜂
𝑑𝑑𝜏𝜏 = 2𝜏𝜏𝐹𝐹(𝜏𝜏)𝑒𝑒𝑍𝑍𝐶𝐶(𝜏𝜏) + 𝜏𝜏2𝐹𝐹′(𝜏𝜏)𝑒𝑒𝑍𝑍𝐶𝐶(𝜏𝜏) + 𝜏𝜏2𝐹𝐹(𝜏𝜏)𝑒𝑒𝑍𝑍𝐶𝐶(𝜏𝜏) 𝑑𝑑𝑍𝑍𝐶𝐶

𝑑𝑑𝜏𝜏 .  (36) 

Substituting 𝛽𝛽 = 𝜏𝜏 𝑑𝑑𝑍𝑍𝐶𝐶
𝑑𝑑𝜏𝜏  and rearranging the terms of (36): 

𝜏𝜏𝑒𝑒𝑍𝑍𝑐𝑐(𝜏𝜏)𝐹𝐹(𝜏𝜏) = 𝑑𝑑𝜂𝜂
𝑑𝑑𝜏𝜏

1
[2+𝜏𝜏𝐹𝐹′(𝜏𝜏)

𝐹𝐹(𝜏𝜏) +𝛽𝛽]
 . (37) 

On substituting (37) in (35) will further transform the  
(33) to:  

𝑑𝑑𝛽𝛽[𝛽𝛽 + 𝐸𝐸(𝜏𝜏)] = 𝜉𝜉𝑑𝑑𝜂𝜂, (38) 

where 𝐸𝐸(𝜏𝜏) = 2 + 𝜏𝜏 𝐹𝐹′(𝜏𝜏)
𝐹𝐹(𝜏𝜏)  is the spatial function related to the 

doping profile, i.e. whether continuous or discrete doping. 
Equation (38) is integrated to obtain: 

𝛽𝛽2

2 + 𝐸𝐸(𝜏𝜏)𝛽𝛽 − ℎ = 𝜉𝜉𝜂𝜂, (39) 

where ℎ = −𝜉𝜉𝜂𝜂0 − 2𝐸𝐸 + 2 is an integration constant to be 
determined from boundary conditions. Substituting 𝛽𝛽 = 𝜏𝜏 𝑑𝑑𝑍𝑍𝐶𝐶

𝑑𝑑𝜏𝜏  
and 𝜂𝜂 = 𝜏𝜏2𝐹𝐹(𝜏𝜏)𝑒𝑒𝑍𝑍𝑐𝑐(𝜏𝜏) in (39) and using (32) will yield : 

𝑑𝑑2𝑍𝑍𝐶𝐶(𝜏𝜏)
𝑑𝑑𝜏𝜏2 − [𝑝𝑝(𝜏𝜏)−1]

𝜏𝜏
𝑑𝑑𝑍𝑍𝑐𝑐(𝜏𝜏)

𝑑𝑑𝜏𝜏 − 1
2 (𝑑𝑑𝑍𝑍𝑐𝑐(𝜏𝜏)

𝑑𝑑𝜏𝜏 )
2

+ ℎ
𝜏𝜏2 = 0 . (40) 

On solving (40), the general solution of 1-D Poisson’s 
equation can be readily obtained as: 

𝑍𝑍𝐶𝐶 = −𝐸𝐸 ln 𝜏𝜏 + 𝐴𝐴 − 2 ln |cos (1
2 √−(𝐸𝐸 − 2)2 − 2ℎ ln 𝜏𝜏 −

                                                     𝐵𝐵√−(𝐸𝐸 − 2)2 − 2ℎ)|,         (41) 

where 𝐴𝐴 and 𝐵𝐵 are the integration constants. Here the 𝛽𝛽(𝜏𝜏) is 
approximated as: 

𝛽𝛽(𝜏𝜏) = −𝐸𝐸 + √−(𝐸𝐸 − 2)2 − 2ℎ  (42) 
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             tan {12√−(𝑝𝑝 − 2)2 − 2ℎ (ln 𝜏𝜏 − 𝑡𝑡𝑠𝑠𝑠𝑠
2 ) 

+ tan−1 [ 𝛽𝛽𝑠𝑠+𝑝𝑝
√−(𝑝𝑝−2)2−2ℎ

]}, 

where 𝛽𝛽𝑠𝑠 is value of 𝛽𝛽(𝜏𝜏) at the surface (𝜏𝜏 = 𝑒𝑒
𝑡𝑡𝑠𝑠𝑠𝑠
2 ) and can be 

approximated from the relation:    
𝛽𝛽𝑠𝑠2
2 − 𝛽𝛽02

2 + 𝑀𝑀 = 𝜉𝜉(𝜂𝜂𝑠𝑠 − 𝜂𝜂0) , (43) 

where 𝛽𝛽0 is value of 𝛽𝛽(𝜏𝜏) at the center of the silicon body 
(𝜏𝜏 = 1). For the symmetric DG MOSFETs, 𝛽𝛽0 =

𝑑𝑑𝑍𝑍𝐶𝐶 𝑑𝑑𝜏𝜏⁄ |𝜏𝜏=1 = −2 is considered. 𝑀𝑀 = ∫ [𝑝𝑝(𝜏𝜏) 𝑑𝑑𝛽𝛽𝑑𝑑𝜏𝜏] 𝑑𝑑𝜏𝜏
𝑒𝑒
𝑡𝑡𝑠𝑠𝑠𝑠
2

1  is an 
integral to be solved. 𝜂𝜂0 is calculated from the relation: 

𝜂𝜂0 =
𝑐𝑐(𝛽𝛽𝑠𝑠+2)

𝜉𝜉[1+(𝛽𝛽𝑠𝑠+2𝛽𝛽𝑐𝑐+2
)]

 , (44) 

where 𝛽𝛽𝑐𝑐 is the value of 𝛽𝛽𝑠𝑠 when 𝜂𝜂0 reaches its saturation value 
𝜂𝜂0𝑠𝑠𝑠𝑠𝑡𝑡 whose value is given by: 𝛽𝛽𝑐𝑐 =

𝜉𝜉𝜂𝜂0𝑠𝑠𝑠𝑠𝑡𝑡
𝑐𝑐−2 . The parameters 𝑐𝑐, 

𝜂𝜂0𝑠𝑠𝑠𝑠𝑡𝑡 are expressed as: 

𝑐𝑐 = 𝜉𝜉𝜀𝜀𝑠𝑠𝑠𝑠𝑘𝑘𝑏𝑏𝑇𝑇𝑇𝑇(1)
𝑞𝑞𝛳𝛳𝑠𝑠

 , with   𝛳𝛳𝑠𝑠 = ∫ 𝑞𝑞𝑛𝑛𝑠𝑠2

𝑁𝑁𝑠𝑠𝑠𝑠
𝑒𝑒
𝑞𝑞(𝑞𝑞𝑁𝑁𝑠𝑠𝑠𝑠𝜀𝜀𝑠𝑠𝑠𝑠

𝑥𝑥2
2 )

𝑘𝑘𝑏𝑏𝑇𝑇 𝑑𝑑𝑑𝑑
𝑡𝑡𝑠𝑠𝑠𝑠
2

0 , 
(45) 

𝜂𝜂0𝑠𝑠𝑠𝑠𝑡𝑡 = 1 × 𝐹𝐹(1) × 𝑒𝑒𝑍𝑍𝐶𝐶𝑠𝑠𝑠𝑠𝑡𝑡  
with 𝑍𝑍𝐶𝐶𝑠𝑠𝑠𝑠𝑡𝑡 ≈ 2 ln (𝑁𝑁𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠

) − ln[1 − 𝑒𝑒−2𝛼𝛼] − 𝛼𝛼 + 1.6 

where 𝛼𝛼 = 𝑞𝑞2𝑁𝑁𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠2

8𝜀𝜀𝑠𝑠𝑠𝑠𝑘𝑘𝑏𝑏𝑇𝑇
. 

 

The potential distribution characteristics obtained from the 
model (41) is able show the variation of electrostatic potential 
with respect to the 𝑉𝑉𝑔𝑔 from weak to strong inversion regime. 

B. Threshold Voltage Models 
The 𝑉𝑉𝑡𝑡ℎ of conventional bulk MOSFET is defined as the 𝑉𝑉𝑔𝑔 

at which the minimum surface potential value 𝜙𝜙𝑠𝑠,𝑚𝑚𝑚𝑚𝑛𝑛 reaches 
twice the bulk potential 𝜙𝜙𝐵𝐵 [51]. 𝜙𝜙𝐵𝐵 is the potential difference 
between the Fermi-level (𝐸𝐸𝑓𝑓) and the intrinsic level (𝐸𝐸𝑚𝑚) of the 
semiconductor [Fig. 3]. The 𝜙𝜙𝐵𝐵 definition of 𝑉𝑉𝑡𝑡ℎ does not work 
for DG MOSFETs, where the doping concentration is 𝑁𝑁𝑠𝑠𝑚𝑚 ≤
1016 cm-3[18,33].  

 
1) Taur’s Model [15]:  

The threshold criterion for long-channel DG MOSFETs 
given by Taur [15] used iterative method to calculate the  𝑉𝑉𝑡𝑡ℎ 
by extrapolating the linear dependency of inversion charge 
sheet density 𝑄𝑄𝑚𝑚𝑛𝑛𝑖𝑖 with 𝑉𝑉𝑔𝑔 using the relation: 𝑄𝑄𝑚𝑚𝑛𝑛𝑖𝑖 = 2𝐶𝐶𝑜𝑜𝑜𝑜(𝑉𝑉𝑔𝑔 −
∆𝜒𝜒𝑚𝑚𝑠𝑠 − 𝜙𝜙𝑠𝑠). Where 𝜙𝜙𝑠𝑠 ≡ 𝜙𝜙(𝑑𝑑 = 𝑡𝑡𝑠𝑠𝑚𝑚/2) is the surface 
potential.  The threshold condition is given by: 𝑉𝑉𝑡𝑡ℎ = ∆𝜒𝜒𝑚𝑚𝑠𝑠 −
𝜙𝜙𝑠𝑠. The detailed derivation of the model is as follows. 

The effective gate voltage at the silicon-oxide interface is 
expressed as: 

𝑉𝑉𝑔𝑔𝑡𝑡 = 𝑉𝑉𝑔𝑔 − ∆𝜒𝜒𝑚𝑚𝑠𝑠 − 𝜙𝜙𝑠𝑠 . (46) 

Applying boundary condition at the silicon-oxide 
interface: 

𝜀𝜀𝑜𝑜𝑜𝑜
𝑉𝑉𝑔𝑔−∆𝜒𝜒𝑚𝑚𝑠𝑠−𝜙𝜙𝑠𝑠

𝑡𝑡𝑜𝑜𝑥𝑥
= 𝜀𝜀𝑠𝑠𝑚𝑚

𝑑𝑑𝜙𝜙
𝑑𝑑𝑜𝑜|𝑜𝑜=𝑡𝑡𝑠𝑠𝑠𝑠/2

 . (47) 

Substituting  𝑑𝑑𝜙𝜙𝑑𝑑𝑜𝑜|𝑜𝑜=𝑡𝑡𝑠𝑠𝑠𝑠/2
from (4) in (47):  

𝜀𝜀𝑜𝑜𝑜𝑜
𝑉𝑉𝑔𝑔−∆𝜒𝜒𝑚𝑚𝑠𝑠−𝜙𝜙𝑠𝑠

𝑡𝑡𝑜𝑜𝑥𝑥
= √2𝜀𝜀𝑠𝑠𝑚𝑚𝑘𝑘𝑏𝑏𝑇𝑇𝑛𝑛𝑚𝑚 (𝑒𝑒

𝑞𝑞𝜙𝜙𝑠𝑠
𝑘𝑘𝑏𝑏𝑇𝑇 − 𝑒𝑒

𝑞𝑞𝜙𝜙0
𝑘𝑘𝑏𝑏𝑇𝑇) . (48) 

𝜙𝜙𝑠𝑠 is increased with increase in 𝑉𝑉𝑔𝑔, whereas the center potential 
𝜙𝜙0 attains a constant value. For greater value of 𝑉𝑉𝑔𝑔 (more than 
threshold ), the term 𝜙𝜙0 in (48) can be neglected which will 
imply: 

𝜀𝜀𝑜𝑜𝑜𝑜
𝑉𝑉𝑔𝑔−∆𝜒𝜒𝑚𝑚𝑠𝑠−𝜙𝜙𝑠𝑠

𝑡𝑡𝑜𝑜𝑥𝑥
= √2𝜀𝜀𝑠𝑠𝑚𝑚𝑘𝑘𝑏𝑏𝑇𝑇𝑛𝑛𝑚𝑚𝑒𝑒

𝑞𝑞𝜙𝜙𝑠𝑠
2𝑘𝑘𝑏𝑏𝑇𝑇 . (49) 

Since 𝜀𝜀𝑜𝑜𝑥𝑥𝑡𝑡𝑜𝑜𝑥𝑥
= 𝐶𝐶𝑜𝑜𝑜𝑜, so (49) can be re-written as:  

𝐶𝐶𝑜𝑜𝑜𝑜(𝑉𝑉𝑔𝑔 − ∆𝜒𝜒𝑚𝑚𝑠𝑠 − 𝜙𝜙𝑠𝑠) = √2𝜀𝜀𝑠𝑠𝑚𝑚𝑘𝑘𝑏𝑏𝑇𝑇𝑛𝑛𝑚𝑚𝑒𝑒
𝑞𝑞𝜙𝜙𝑠𝑠
2𝑘𝑘𝑏𝑏𝑇𝑇 . (50) 

Substituting 𝑉𝑉𝑔𝑔 − ∆𝜒𝜒𝑚𝑚𝑠𝑠 − 𝜙𝜙𝑠𝑠 = 𝑉𝑉𝑔𝑔𝑡𝑡 in (50) and on solving: 

𝜙𝜙𝑠𝑠 =
2𝑘𝑘𝑏𝑏𝑇𝑇
𝑞𝑞 ln [ 𝐶𝐶𝑜𝑜𝑥𝑥𝑉𝑉𝑔𝑔𝑡𝑡

√2𝜀𝜀𝑠𝑠𝑠𝑠𝑘𝑘𝑏𝑏𝑇𝑇𝑛𝑛𝑠𝑠
]  (51) 

Since the threshold condition is given by:  

𝑉𝑉𝑡𝑡ℎ = ∆𝜒𝜒𝑚𝑚𝑠𝑠 + 𝜙𝜙𝑠𝑠  (52) 

Substituting 𝜙𝜙𝑠𝑠 from (51):  

𝑉𝑉𝑡𝑡ℎ = ∆𝜒𝜒𝑚𝑚𝑠𝑠 +
2𝑘𝑘𝑏𝑏𝑇𝑇
𝑞𝑞 ln [ 𝐶𝐶𝑜𝑜𝑥𝑥𝑉𝑉𝑔𝑔𝑡𝑡

√2𝜀𝜀𝑠𝑠𝑠𝑠𝑘𝑘𝑏𝑏𝑇𝑇𝑛𝑛𝑠𝑠
] . (53) 

The 𝑉𝑉𝑡𝑡ℎ model (53) is a transcendental equation which needs 
to be solved numerically. The 𝜙𝜙𝑠𝑠 increases with the increase in  
𝑉𝑉𝑔𝑔,  and the 𝜙𝜙0 asymptotically approach a constant value: 
𝜙𝜙0,𝑚𝑚𝑠𝑠𝑜𝑜 = (𝑘𝑘𝑏𝑏𝑇𝑇/𝑞𝑞) ln[2𝜋𝜋2𝜀𝜀𝑠𝑠𝑚𝑚𝑘𝑘𝑏𝑏𝑇𝑇/𝑞𝑞2𝑛𝑛𝑚𝑚𝑡𝑡𝑠𝑠𝑚𝑚] with slope = 2𝐶𝐶𝑜𝑜𝑜𝑜. 
Volume inversion takes place in the subthreshold region and 
volume inversion, no band bending occurs.  

2) Chen et al. [18]:  

Chen et al. [18] defined the 𝑉𝑉𝑡𝑡ℎ as the required 𝑉𝑉𝑔𝑔 at which 
the inversion charge sheet density 𝑄𝑄𝑚𝑚𝑛𝑛𝑖𝑖 at minimum potential 
position (virtual cathode) reaches a value 𝑄𝑄𝑡𝑡ℎ which is 
sufficient enough to turn on the device [33]. Fig. 4 shows the 
threshold condition defined for DG MOSFETs. The effective 
conductive path is located at 𝑑𝑑 = 𝑡𝑡𝑠𝑠𝑚𝑚/4 from the top and bottom 
surfaces. The 𝑉𝑉𝑡𝑡ℎ model for the long-channel DG MOSFET is: 

𝑉𝑉𝑡𝑡ℎ = ∆𝜒𝜒𝑚𝑚𝑠𝑠 + 𝑉𝑉𝑇𝑇 ln (
𝑄𝑄𝑡𝑡ℎ
𝑛𝑛𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠

) . (54) 

The value of 𝑄𝑄𝑡𝑡ℎ is determined as 3.2×1010 cm-2. Similar 
expression (54) has been deduced by Hamid et al. [33]. 
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C. Drain-Current Models 
The 𝐼𝐼𝑑𝑑𝑑𝑑 models can be broadly classified into potential 

based and charge based models. In the potential based models, 
the 𝐼𝐼𝑑𝑑𝑑𝑑 is expressed through indirect function of applied 𝑉𝑉𝑔𝑔 and 
𝑉𝑉𝑑𝑑𝑑𝑑. Whereas, in charge based models, the 𝐼𝐼𝑑𝑑𝑑𝑑 is expressed in 
terms of terminal charges, as an implicit function of  𝑉𝑉𝑔𝑔 and 𝑉𝑉𝑑𝑑𝑑𝑑. 

1) Taur et al. [19]:  

The model [19] is a surface potential based model in which 
𝐼𝐼𝑑𝑑𝑑𝑑 is expressed in terms of applied bias. The pre-requisite for 
the model is electrostatic potential models [15,16]. The drain 
current expression is: 

𝐼𝐼𝑑𝑑𝑑𝑑 = 𝜇𝜇 𝑊𝑊
𝐿𝐿

4𝜀𝜀𝑠𝑠𝑠𝑠
𝑡𝑡𝑠𝑠𝑠𝑠

(2𝑘𝑘𝑏𝑏𝑇𝑇
𝑞𝑞 )

2
[𝑔𝑔𝑟𝑟(𝛽𝛽𝑑𝑑) − g𝑟𝑟(𝛽𝛽𝑑𝑑)]  (55) 

where 𝑔𝑔𝑟𝑟(𝛽𝛽) = [𝛽𝛽 tan 𝛽𝛽 − 𝛽𝛽2

2 + 2𝑟𝑟𝛽𝛽2 tan2 𝛽𝛽] with  𝛽𝛽𝑑𝑑 and 𝛽𝛽𝑑𝑑 
are the values of 𝛽𝛽 at the source and drain ends respectively. 
Three different equations have been used for subthreshold, 
linear, and saturation regions by approximating the values of 𝛽𝛽. 
The 𝐼𝐼𝑑𝑑𝑑𝑑 model is based on Pau-Sah's double integral, which is 
based on GCA [50]. The GCA is valid for most regions of 
MOSFET operation except beyond the pinch-off point. Charge-
sheet model [57] is then introduced to obtain the implicit 
equations for 𝐼𝐼𝑑𝑑𝑑𝑑 model. The detailed derivation is as follows. 

For the long channel devices, the total electron current 
density is the sum of the drift and diffusion current 
density [51,58]: 

𝐽𝐽𝑛𝑛(𝑥𝑥, 𝑦𝑦) = 𝑞𝑞𝑞𝑞(𝑥𝑥, 𝑦𝑦)𝜇𝜇𝑛𝑛𝐸𝐸𝑥𝑥 + 𝑞𝑞𝐷𝐷𝑛𝑛
𝑑𝑑𝑛𝑛(𝑥𝑥,𝑦𝑦)

𝑑𝑑𝑥𝑥  , (56) 

where 𝐸𝐸𝑥𝑥 = −𝑑𝑑𝜙𝜙(𝑥𝑥)/𝑑𝑑𝑥𝑥 is the vertical electric field in the 
silicon body and 𝐷𝐷𝑛𝑛 = 𝜇𝜇𝑛𝑛𝑉𝑉𝑇𝑇 is the electron diffusion 
coefficient [51]. Substituting 𝐸𝐸𝑥𝑥 and 𝐷𝐷𝑛𝑛 in (56): 

𝐽𝐽𝑛𝑛(𝑥𝑥, 𝑦𝑦) = −𝑞𝑞𝑞𝑞(𝑥𝑥, 𝑦𝑦)𝜇𝜇𝑛𝑛 [𝑑𝑑𝜙𝜙(𝑥𝑥)
𝑑𝑑𝑥𝑥 − 𝑘𝑘𝑏𝑏𝑇𝑇

𝑞𝑞𝑛𝑛(𝑥𝑥,𝑦𝑦)
𝑑𝑑𝑛𝑛(𝑥𝑥,𝑦𝑦)

𝑑𝑑𝑥𝑥 ] , (57) 

where 𝑞𝑞(𝑥𝑥, 𝑦𝑦) = 𝑞𝑞𝑖𝑖𝑒𝑒
𝑞𝑞(𝜙𝜙(𝑥𝑥)−𝜙𝜙𝐹𝐹)

𝑘𝑘𝑏𝑏𝑇𝑇 is the electron density. On 
rearranging the terms of 𝑞𝑞(𝑥𝑥, 𝑦𝑦): 

𝑛𝑛(𝑥𝑥,𝑦𝑦)
𝑛𝑛𝑠𝑠

= 𝑒𝑒
𝑞𝑞(𝜙𝜙(𝑥𝑥)−𝜙𝜙𝐹𝐹)

𝑘𝑘𝑏𝑏𝑇𝑇  , which on solving will yield:  

𝜙𝜙(𝑥𝑥) − 𝑘𝑘𝑏𝑏𝑇𝑇
𝑞𝑞 ln [𝑛𝑛(𝑥𝑥,𝑦𝑦)

𝑛𝑛𝑠𝑠
] = 𝜙𝜙𝐹𝐹 . (58) 

Differentiating (58) with respect to 𝑥𝑥  
𝑑𝑑𝜙𝜙(𝑥𝑥)

𝑑𝑑𝑥𝑥 − 𝑘𝑘𝑏𝑏𝑇𝑇
𝑞𝑞𝑛𝑛(𝑥𝑥,𝑦𝑦)

𝑑𝑑𝑛𝑛(𝑥𝑥,𝑦𝑦)
𝑑𝑑𝑥𝑥 = 𝑑𝑑𝜙𝜙𝐹𝐹

𝑑𝑑𝑥𝑥  . (59) 

Substituting (59) in (57):  

𝐽𝐽𝑛𝑛(𝑥𝑥, 𝑦𝑦) = −𝑞𝑞𝜇𝜇𝑛𝑛𝑞𝑞(𝑥𝑥, 𝑦𝑦) 𝑑𝑑𝜙𝜙𝐹𝐹
𝑑𝑑𝑦𝑦  . (60) 

The 𝐼𝐼𝑑𝑑𝑑𝑑 is expressed in terms of 𝐽𝐽𝑛𝑛(𝑥𝑥, 𝑦𝑦) [51] as:  

𝐼𝐼𝑑𝑑𝑑𝑑(𝑦𝑦) = 2𝑊𝑊 ∫ −
𝑡𝑡𝑠𝑠𝑠𝑠
2

0 𝑞𝑞𝜇𝜇𝑛𝑛𝑞𝑞(𝑥𝑥, 𝑦𝑦) 𝑑𝑑𝜙𝜙𝐹𝐹
𝑑𝑑𝑦𝑦 𝑑𝑑𝑥𝑥 . (61) 

Equation (61) can be written as:  

𝐼𝐼𝑑𝑑𝑑𝑑(𝑦𝑦) = 2𝑊𝑊𝜇𝜇𝑛𝑛(−𝑄𝑄𝑖𝑖𝑛𝑛𝑖𝑖(𝑦𝑦)) 𝑑𝑑𝜙𝜙𝐹𝐹
𝑑𝑑𝑦𝑦  , (62) 

where −𝑄𝑄𝑖𝑖𝑛𝑛𝑖𝑖(𝑦𝑦) = ∫ 𝑞𝑞𝑞𝑞(𝑥𝑥, 𝑦𝑦)𝑑𝑑𝑥𝑥
𝑡𝑡𝑠𝑠𝑠𝑠
2

0  is the inversion charge 
sheet density. Integrating the both sides of  (62) : 

∫ 𝐼𝐼𝑑𝑑𝑑𝑑(𝑦𝑦)𝑑𝑑𝑦𝑦 =𝐿𝐿
0 𝜇𝜇𝑛𝑛2𝑊𝑊 ∫ (−𝑄𝑄𝑖𝑖𝑛𝑛𝑖𝑖(𝑦𝑦))𝑑𝑑𝜙𝜙𝐹𝐹

𝑉𝑉𝑑𝑑𝑠𝑠
0  ,  

𝐼𝐼𝑑𝑑𝑑𝑑 = 𝜇𝜇𝑛𝑛 (2𝑊𝑊
𝐿𝐿 ) ∫ (−𝑄𝑄𝑖𝑖𝑛𝑛𝑖𝑖(𝑦𝑦))𝑑𝑑𝜙𝜙𝐹𝐹

𝑉𝑉𝑑𝑑𝑠𝑠
0  . (63) 

Rearranging the terms of (1) will yield: 

𝑒𝑒
𝜙𝜙(𝑥𝑥)−𝜙𝜙𝐹𝐹

𝑉𝑉𝑇𝑇 = (2𝛽𝛽
𝑡𝑡𝑠𝑠𝑠𝑠

)
2

(2𝜀𝜀𝑠𝑠𝑠𝑠𝑘𝑘𝑏𝑏𝑇𝑇
𝑞𝑞2𝑛𝑛𝑠𝑠

) sec2 (2𝛽𝛽
𝑡𝑡𝑠𝑠𝑠𝑠

𝑥𝑥) . (64) 

On substituting 𝑞𝑞(𝑥𝑥, 𝑦𝑦) = 𝑞𝑞𝑖𝑖𝑒𝑒
𝑞𝑞(𝜙𝜙(𝑥𝑥)−𝜙𝜙𝐹𝐹)

𝑘𝑘𝑏𝑏𝑇𝑇 in the expression  

−𝑄𝑄𝑖𝑖𝑛𝑛𝑖𝑖(𝑦𝑦) = ∫ 𝑞𝑞𝑞𝑞(𝑥𝑥, 𝑦𝑦)𝑑𝑑𝑥𝑥
𝑡𝑡𝑠𝑠𝑠𝑠
2

0  will yield: 

−𝑄𝑄𝑖𝑖𝑛𝑛𝑖𝑖(𝑦𝑦) = 𝑞𝑞 ∫ 𝑞𝑞𝑖𝑖𝑒𝑒
𝜙𝜙(𝑥𝑥)−𝜙𝜙𝐹𝐹

𝑉𝑉𝑇𝑇
𝑡𝑡𝑠𝑠𝑠𝑠
2

0 𝑑𝑑𝑥𝑥 . (65) 

Substituting (64) in (65):  

−𝑄𝑄𝑖𝑖𝑛𝑛𝑖𝑖(𝑦𝑦) = 𝑞𝑞 ∫ 𝑞𝑞𝑖𝑖 (2𝛽𝛽
𝑡𝑡𝑠𝑠𝑠𝑠

)
2

(2𝜀𝜀𝑠𝑠𝑠𝑠𝑘𝑘𝑏𝑏𝑇𝑇
𝑞𝑞2𝑛𝑛𝑠𝑠

) sec2 (2𝛽𝛽
𝑡𝑡𝑠𝑠𝑠𝑠

𝑥𝑥) 𝑑𝑑𝑥𝑥
𝑡𝑡𝑠𝑠𝑠𝑠
2

0  . (66) 

On solving (66):  

−𝑄𝑄𝑖𝑖𝑛𝑛𝑖𝑖(𝑦𝑦) = 𝑞𝑞𝑞𝑞𝑖𝑖 (2𝛽𝛽
𝑡𝑡𝑠𝑠𝑠𝑠

)
2

(2𝜀𝜀𝑠𝑠𝑠𝑠𝑘𝑘𝑏𝑏𝑇𝑇
𝑞𝑞2𝑛𝑛𝑠𝑠

) (𝑡𝑡𝑠𝑠𝑠𝑠
2𝛽𝛽) tan (2𝛽𝛽

𝑡𝑡𝑠𝑠𝑠𝑠
𝑥𝑥)|

𝑥𝑥=0

𝑡𝑡𝑠𝑠𝑠𝑠
2

  

                 =  𝑞𝑞𝑞𝑞𝑖𝑖 (2𝛽𝛽
𝑡𝑡𝑠𝑠𝑠𝑠

) (2𝜀𝜀𝑠𝑠𝑠𝑠𝑘𝑘𝑏𝑏𝑇𝑇
𝑞𝑞2𝑛𝑛𝑠𝑠

) tan(𝛽𝛽)   

                 = 4𝜀𝜀𝑠𝑠𝑠𝑠𝑘𝑘𝑏𝑏𝑇𝑇
𝑞𝑞𝑡𝑡𝑠𝑠𝑠𝑠

𝛽𝛽 tan 𝛽𝛽 . (67) 

Source
(n+)

Gate

Drain
(n+)

Vds

Vg

Vg

Oxide

Gate

ymin

Qth

 
Fig. 4. Schematic showing the inversion charge sheet density at threshold 
condition. (Dashed lines represent the effective conductive path). 
 

  
𝐼𝐼𝑑𝑑𝑑𝑑 = 𝜇𝜇𝑛𝑛 (2𝑊𝑊

𝐿𝐿 ) ∫ 4𝜀𝜀𝑠𝑠𝑠𝑠𝑘𝑘𝑏𝑏𝑇𝑇
𝑞𝑞𝑡𝑡𝑠𝑠𝑠𝑠

𝛽𝛽 tan 𝛽𝛽 [−2𝑉𝑉𝑇𝑇 {1
𝛽𝛽  + (2𝑟𝑟 + 1) tan 𝛽𝛽 + 2𝑟𝑟𝛽𝛽 sec2 𝛽𝛽}] 𝑑𝑑𝛽𝛽𝑉𝑉𝑑𝑑𝑠𝑠

0 . (70) 
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Referring to the expression (27):   

 𝑉𝑉𝑔𝑔−∆𝜒𝜒𝑚𝑚𝑚𝑚−𝜙𝜙𝐹𝐹
2𝑉𝑉𝑇𝑇

− 𝑙𝑙𝑙𝑙 [ 2
𝑡𝑡𝑚𝑚𝑠𝑠

√2𝜀𝜀𝑚𝑚𝑠𝑠𝑘𝑘𝑏𝑏𝑇𝑇
𝑞𝑞2𝑛𝑛𝑠𝑠

] =  

ln 𝛽𝛽 − ln cos 𝛽𝛽 + 2𝑟𝑟𝛽𝛽 tan 𝛽𝛽. 
(68) 

Differentiating (68) with respect to 𝛽𝛽 :  

𝑑𝑑𝜙𝜙𝐹𝐹 = −2𝑉𝑉𝑇𝑇 [1
𝛽𝛽 + (2𝑟𝑟 + 1) tan 𝛽𝛽   +2𝑟𝑟𝛽𝛽 sec2 𝛽𝛽] . (69) 

Substituting (67) and (69) in (63) will yield (shown at the 
bottom of the previous page): 

Changing the integral limit of (70) from ∫ 𝑑𝑑𝛽𝛽𝑉𝑉𝑑𝑑𝑚𝑚
0  to 

∫ 𝑑𝑑𝛽𝛽𝛽𝛽𝑑𝑑
𝛽𝛽𝑚𝑚

: 

𝐼𝐼𝑑𝑑𝑑𝑑 = −𝜇𝜇𝑛𝑛 (2𝑊𝑊
𝐿𝐿 ) (2𝜀𝜀𝑚𝑚𝑠𝑠

𝑡𝑡𝑚𝑚𝑠𝑠
) (2𝑘𝑘𝑏𝑏𝑇𝑇

𝑞𝑞 )
2
  

∫ [tan 𝛽𝛽 + (2𝑟𝑟 + 1) 𝛽𝛽tan2 𝛽𝛽 + 2𝑟𝑟𝛽𝛽2 tan 𝛽𝛽 sec2 𝛽𝛽]𝑑𝑑𝛽𝛽𝛽𝛽𝑑𝑑
𝛽𝛽𝑚𝑚

  

      = 𝜇𝜇𝑛𝑛 (2𝑊𝑊
𝐿𝐿 ) (2𝜀𝜀𝑚𝑚𝑠𝑠

𝑡𝑡𝑚𝑚𝑠𝑠
) (2𝑘𝑘𝑏𝑏𝑇𝑇

𝑞𝑞 )
2

[∫ tan 𝛽𝛽𝑑𝑑𝛽𝛽 +𝛽𝛽𝑚𝑚
𝛽𝛽𝑑𝑑

          (2𝑟𝑟 + 1) ∫ 𝛽𝛽 tan2 𝛽𝛽𝑑𝑑𝛽𝛽 +𝛽𝛽𝑚𝑚
𝛽𝛽𝑑𝑑

           2𝑟𝑟 ∫ 𝛽𝛽2 tan 𝛽𝛽 sec2 𝛽𝛽 𝑑𝑑𝛽𝛽𝛽𝛽𝑚𝑚
𝛽𝛽𝑑𝑑

] . 

(71) 

There are three integrals to be solved in (71) which 
are:∫ tan 𝛽𝛽𝑑𝑑𝛽𝛽, ∫ 𝛽𝛽 tan2 𝛽𝛽 𝑑𝑑𝛽𝛽, and 𝛽𝛽2 tan 𝛽𝛽 sec2 𝛽𝛽 𝑑𝑑𝛽𝛽. 
Solution of the integrals are expressed as: 

∫ tan 𝛽𝛽𝑑𝑑𝛽𝛽 = ln sec 𝛽𝛽 . (72) 

∫ 𝛽𝛽 tan2 𝛽𝛽 𝑑𝑑𝛽𝛽 = ∫ 𝛽𝛽(sec2 𝛽𝛽 − 1)𝑑𝑑𝛽𝛽 , 
                       = ∫ 𝛽𝛽 sec2 𝛽𝛽 𝑑𝑑𝛽𝛽 − ∫ 𝛽𝛽𝑑𝑑𝛽𝛽  
                       = 𝛽𝛽 tan 𝛽𝛽 − ln sec 𝛽𝛽 − 𝛽𝛽2

2  . 

 

 

(73) 

∫ 𝛽𝛽2 tan 𝛽𝛽 sec2 𝛽𝛽 𝑑𝑑𝛽𝛽 = 𝛽𝛽2 tan 𝛽𝛽 ∫ sec2 𝛽𝛽 𝑑𝑑𝛽𝛽 −
                                ∫ { 𝑑𝑑

𝑑𝑑𝛽𝛽 𝛽𝛽2 tan 𝛽𝛽 ∫ sec2 𝛽𝛽 𝑑𝑑𝛽𝛽} 𝑑𝑑𝛽𝛽  

               = 1
2 𝛽𝛽2 tan2 𝛽𝛽 − 𝛽𝛽 tan 𝛽𝛽 + ln sec 𝛽𝛽 + 𝛽𝛽2

2  . 

 

 

(74) 

Substituting (72−74) in (71) will yield: 

𝐼𝐼𝑑𝑑𝑑𝑑 = 𝜇𝜇𝑛𝑛 (2𝑊𝑊
𝐿𝐿 ) (2𝜀𝜀𝑚𝑚𝑠𝑠

𝑡𝑡𝑚𝑚𝑠𝑠
) (2𝑘𝑘𝑏𝑏𝑇𝑇

𝑞𝑞 )
2

[𝛽𝛽 tan 𝛽𝛽 − 𝛽𝛽2

2 +

                                                                  𝑟𝑟𝛽𝛽2 tan2 𝛽𝛽]|
𝛽𝛽=𝛽𝛽𝑑𝑑

𝛽𝛽𝑚𝑚
.  

(75) 

Equating the terms: ln 𝛽𝛽 − ln cos 𝛽𝛽 + 2𝑟𝑟𝛽𝛽 tan 𝛽𝛽 = 𝑓𝑓𝑟𝑟(𝛽𝛽) 
[from (68)] and 𝛽𝛽 tan 𝛽𝛽 − 𝛽𝛽2

2 + 𝑟𝑟𝛽𝛽2 tan2 𝛽𝛽 = 𝑔𝑔𝑟𝑟(𝛽𝛽) [from (55) 
and (75)].  At source end 𝛽𝛽 = 𝛽𝛽𝑑𝑑 and 𝜙𝜙𝐹𝐹 = 0 V. So,  

𝑓𝑓𝑟𝑟(𝛽𝛽𝑑𝑑) = 𝑉𝑉𝑔𝑔−∆𝜒𝜒𝑚𝑚𝑚𝑚
2𝑉𝑉𝑇𝑇

− ln [ 2
𝑡𝑡𝑚𝑚𝑠𝑠

√2𝜀𝜀𝑚𝑚𝑠𝑠𝑘𝑘𝑏𝑏𝑇𝑇
𝑞𝑞2𝑛𝑛𝑠𝑠

]   

           =
𝑉𝑉𝑔𝑔−(∆𝜒𝜒𝑚𝑚𝑚𝑚+2𝑉𝑉𝑇𝑇 ln[ 2

𝑡𝑡𝑚𝑚𝑠𝑠
√2𝜀𝜀𝑚𝑚𝑠𝑠𝑘𝑘𝑏𝑏𝑇𝑇

𝑞𝑞2𝑛𝑛𝑠𝑠
])

2𝑉𝑉𝑇𝑇
  

 

           = 𝑉𝑉𝑔𝑔−𝑉𝑉0
2𝑉𝑉𝑇𝑇

 . (76) 

where 𝑉𝑉0 = ∆𝜒𝜒𝑚𝑚𝑑𝑑 + 2𝑉𝑉𝑇𝑇 ln [ 2
𝑡𝑡𝑚𝑚𝑠𝑠

√2𝜀𝜀𝑚𝑚𝑠𝑠𝑘𝑘𝑏𝑏𝑇𝑇
𝑞𝑞2𝑛𝑛𝑠𝑠

]. At drain end, 𝛽𝛽 = 𝛽𝛽𝑑𝑑 

and 𝜙𝜙𝐹𝐹 = 𝑉𝑉𝑑𝑑𝑑𝑑. So,  

 𝑓𝑓𝑟𝑟(𝛽𝛽𝑑𝑑) = 𝑉𝑉𝑔𝑔−𝑉𝑉0−𝑉𝑉𝑑𝑑𝑚𝑚
2𝑉𝑉𝑇𝑇

. (77) 

In the linear region of operation,  𝑓𝑓𝑟𝑟(𝛽𝛽𝑑𝑑) = 𝑓𝑓𝑟𝑟(𝛽𝛽𝑑𝑑) ≫ 1 
which implies 𝛽𝛽𝑑𝑑, 𝛽𝛽𝑑𝑑 > 𝜋𝜋

2. So, the term 𝑓𝑓𝑟𝑟(𝛽𝛽) in (76) and 𝑔𝑔𝑟𝑟(𝛽𝛽) 
in (77) are reduced to 2𝑟𝑟𝛽𝛽 tan 𝛽𝛽 and 𝑟𝑟𝛽𝛽2 tan2 𝛽𝛽 respectively. 
Therefore, 

𝑓𝑓𝑟𝑟(𝛽𝛽𝑑𝑑) ≡ 𝛽𝛽𝑑𝑑 tan 𝛽𝛽𝑑𝑑 = (𝑉𝑉𝑔𝑔−𝑉𝑉𝑜𝑜
2𝑉𝑉𝑇𝑇

) 1
2𝑟𝑟 . (78) 

Similarly, 𝑓𝑓𝑟𝑟(𝛽𝛽𝑑𝑑) ≡ 𝛽𝛽𝑑𝑑 tan 𝛽𝛽𝑑𝑑 = (𝑉𝑉𝑔𝑔−𝑉𝑉𝑜𝑜−𝑉𝑉𝑑𝑑𝑚𝑚
2𝑉𝑉𝑇𝑇

) 1
2𝑟𝑟 ,  (79) 

and the expression (75) reduces to:  

𝐼𝐼𝑑𝑑𝑑𝑑,𝐿𝐿𝐿𝐿𝐿𝐿 = 𝜇𝜇𝑛𝑛
2𝑊𝑊

𝐿𝐿
2𝜀𝜀𝑚𝑚𝑠𝑠
𝑡𝑡𝑚𝑚𝑠𝑠

(2𝑉𝑉𝑇𝑇)2[𝑟𝑟𝛽𝛽2 tan2 𝛽𝛽]𝛽𝛽𝑑𝑑
𝛽𝛽𝑚𝑚  . (80) 

On substituting (78) and (79) in (80) :  

𝐼𝐼𝑑𝑑𝑑𝑑,𝐿𝐿𝐿𝐿𝐿𝐿 = 𝜇𝜇𝑛𝑛
2𝑊𝑊

𝐿𝐿
2𝜀𝜀𝑚𝑚𝑠𝑠
𝑡𝑡𝑚𝑚𝑠𝑠

(2𝑉𝑉𝑇𝑇)2 1
4𝑟𝑟 [(𝑉𝑉𝑔𝑔−𝑉𝑉𝑜𝑜

2𝑉𝑉𝑇𝑇
)

2
− (𝑉𝑉𝑔𝑔−𝑉𝑉𝑜𝑜−𝑉𝑉𝑑𝑑𝑚𝑚

2𝑉𝑉𝑇𝑇
)

2
]  

 = 𝜇𝜇𝑛𝑛
𝑊𝑊
𝐿𝐿 𝐶𝐶𝑜𝑜𝑜𝑜 [(𝑉𝑉𝑔𝑔 − 𝑉𝑉𝑜𝑜)2 − (𝑉𝑉𝑔𝑔 − 𝑉𝑉𝑜𝑜)2 − 𝑉𝑉𝑑𝑑𝑑𝑑

2 + 2(𝑉𝑉𝑔𝑔 − 𝑉𝑉𝑜𝑜)𝑉𝑉𝑑𝑑𝑑𝑑]  

 = 2𝜇𝜇𝑛𝑛
𝑊𝑊
𝐿𝐿 𝐶𝐶𝑜𝑜𝑜𝑜 [(𝑉𝑉𝑔𝑔 − 𝑉𝑉𝑡𝑡ℎ) − 𝑉𝑉𝑑𝑑𝑚𝑚

2 ] 𝑉𝑉𝑑𝑑𝑑𝑑 , (81) 

where 𝑉𝑉𝑡𝑡ℎ = 𝑉𝑉𝑜𝑜 + 𝛿𝛿, 𝛿𝛿 is the second-order effects. 
The 𝐼𝐼𝑑𝑑𝑑𝑑,𝐿𝐿𝐿𝐿𝐿𝐿 (81) is the drain current expression for the linear 
region. The 𝛿𝛿 is derived as follows. 

Considering 𝜙𝜙𝐹𝐹 = 0 in (25), the 𝜙𝜙𝑑𝑑 at the source region is 

expressed as:  𝜙𝜙𝑑𝑑 = − 2𝑘𝑘𝑏𝑏𝑇𝑇
𝑞𝑞 ln [𝑡𝑡𝑚𝑚𝑠𝑠

2𝛽𝛽 √ 𝑞𝑞2𝑛𝑛𝑠𝑠
2𝜀𝜀𝑚𝑚𝑠𝑠𝑘𝑘𝑏𝑏𝑇𝑇 cos(𝛽𝛽)]. Since the 

threshold condition is given by: 𝑉𝑉𝑡𝑡ℎ = ∆𝜒𝜒𝑚𝑚𝑑𝑑 + 𝜙𝜙𝑑𝑑 [15], the 
expression of the 𝑉𝑉𝑡𝑡ℎ in (81) is written as: 

𝑉𝑉𝑡𝑡ℎ = ∆𝜒𝜒𝑚𝑚𝑑𝑑 − 2𝑘𝑘𝑏𝑏𝑇𝑇
𝑞𝑞 ln [𝑡𝑡𝑚𝑚𝑠𝑠

2 √ 𝑞𝑞2𝑛𝑛𝑠𝑠
2𝜀𝜀𝑚𝑚𝑠𝑠𝑘𝑘𝑏𝑏𝑇𝑇] − 2𝑘𝑘𝑏𝑏𝑇𝑇

𝑞𝑞 ln cos 𝛽𝛽
𝛽𝛽   

      = 𝑉𝑉𝑜𝑜 + 2𝑘𝑘𝑏𝑏𝑇𝑇
𝑞𝑞 ln 𝛽𝛽

cos 𝛽𝛽   

      = 𝑉𝑉𝑜𝑜 + 2𝑘𝑘𝑏𝑏𝑇𝑇
𝑞𝑞 ln 𝛽𝛽 sin β

cos 𝛽𝛽 sin 𝛽𝛽   

      = 𝑉𝑉𝑜𝑜 + 2𝑘𝑘𝑏𝑏𝑇𝑇
𝑞𝑞 ln 𝛽𝛽 tan 𝛽𝛽 − 2𝑘𝑘𝑏𝑏𝑇𝑇

𝑞𝑞 ln sin 𝛽𝛽 . (82) 

In the strong inversion condition, the  𝛽𝛽 → 𝜋𝜋
2 which implies 

the term “ln sin 𝛽𝛽” in (82) is ≈0. So,  

𝑉𝑉𝑡𝑡ℎ = 𝑉𝑉𝑜𝑜 + 2𝑘𝑘𝑏𝑏𝑇𝑇
𝑞𝑞 ln 𝛽𝛽 tan 𝛽𝛽 = 𝑉𝑉𝑜𝑜 + 𝛿𝛿 , (83) 

with 𝛿𝛿 = (2𝑘𝑘𝐵𝐵𝑇𝑇/𝑞𝑞) ln 𝛽𝛽 tan 𝛽𝛽. Substituting (78) in (83) will 
yield: 

𝛿𝛿 = 2𝑘𝑘𝑏𝑏𝑇𝑇
𝑞𝑞 𝑙𝑙𝑙𝑙 [(𝑉𝑉𝑔𝑔−𝑉𝑉𝑜𝑜

2𝑉𝑉𝑇𝑇
) 1

2𝑟𝑟] . (84) 

Equation (84) is the second-order effect ≈0.05V.  
In the saturation region of operation,  𝛽𝛽𝑑𝑑 ≈ 𝜋𝜋/2 and 𝛽𝛽𝑑𝑑 ≪1. 

So, the terms 𝑓𝑓𝑟𝑟(𝛽𝛽𝑑𝑑) and 𝑓𝑓𝑟𝑟(𝛽𝛽𝑑𝑑) are reduced to 2𝑟𝑟𝛽𝛽𝑑𝑑 tan 𝛽𝛽𝑑𝑑 and 
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ln 𝛽𝛽𝑑𝑑  respectively. Therefore,  

 𝑓𝑓𝑟𝑟(𝛽𝛽𝑠𝑠) ≡ 𝑟𝑟𝛽𝛽𝑠𝑠 tan𝛽𝛽𝑠𝑠 = (
𝑉𝑉𝑔𝑔−𝑉𝑉𝑜𝑜
4𝑉𝑉𝑇𝑇

)  (85) 

and 𝑓𝑓𝑟𝑟(𝛽𝛽𝑑𝑑) ≡ 𝛽𝛽𝑑𝑑 = 𝑒𝑒
(𝑉𝑉𝑔𝑔−𝑉𝑉𝑜𝑜−𝑉𝑉𝑑𝑑𝑑𝑑2𝑉𝑉𝑇𝑇

). (86) 

The expression (75) reduces to :  

𝐼𝐼𝑑𝑑𝑠𝑠,𝑆𝑆𝑆𝑆𝑆𝑆 = 𝜇𝜇𝑛𝑛
2𝑊𝑊
𝐿𝐿
2𝜀𝜀𝑑𝑑𝑠𝑠
𝑡𝑡𝑑𝑑𝑠𝑠
(2𝑉𝑉𝑆𝑆)2 [𝑟𝑟𝛽𝛽𝑠𝑠2 tan2 𝛽𝛽𝑠𝑠 −

𝛽𝛽𝑑𝑑2

2 ] . (87) 

Substituting (85) and (86) in (87) will yield:  

𝐼𝐼𝑑𝑑𝑠𝑠,𝑆𝑆𝑆𝑆𝑆𝑆 = 𝜇𝜇𝑛𝑛
2𝑊𝑊
𝐿𝐿
2𝜀𝜀𝑑𝑑𝑠𝑠
𝑡𝑡𝑑𝑑𝑠𝑠
(2𝑉𝑉𝑆𝑆)2 [𝑟𝑟 (

𝑉𝑉𝑔𝑔−𝑉𝑉𝑜𝑜
4𝑉𝑉𝑇𝑇

)
2
− 1

2 𝑒𝑒
(𝑉𝑉𝑔𝑔−𝑉𝑉𝑜𝑜−𝑉𝑉𝑑𝑑𝑑𝑑𝑉𝑉𝑇𝑇

)]  

      = 𝜇𝜇𝑛𝑛
𝑊𝑊
𝐿𝐿 𝐶𝐶𝑜𝑜𝑜𝑜 [(𝑉𝑉𝑔𝑔 − 𝑉𝑉𝑜𝑜)

2 − 8𝑟𝑟𝑘𝑘𝑏𝑏2𝑆𝑆2

𝑞𝑞2 𝑒𝑒(
𝑉𝑉𝑔𝑔−𝑉𝑉𝑜𝑜−𝑉𝑉𝑑𝑑𝑑𝑑

𝑉𝑉𝑇𝑇
)] . (88) 

Equation (88) is the drain current expression for the 
saturation region (𝐼𝐼𝑑𝑑𝑠𝑠,𝑆𝑆𝑆𝑆𝑆𝑆). 

In subthreshold region of operation, 𝛽𝛽𝑠𝑠, 𝛽𝛽𝑑𝑑 ≪ 1. So the 
terms 𝑓𝑓𝑟𝑟(𝛽𝛽) and 𝑔𝑔𝑟𝑟(𝛽𝛽)  are reduced to ln 𝛽𝛽 and (𝛽𝛽/2) 
respectively. On solving (76) for 𝑓𝑓𝑟𝑟(𝛽𝛽) = ln 𝛽𝛽 will yield: 

ln 𝛽𝛽𝑠𝑠 =
𝑉𝑉𝑔𝑔−𝑉𝑉𝑜𝑜
2𝑉𝑉𝑇𝑇

≡ 𝑉𝑉𝑔𝑔−∆𝜒𝜒𝑚𝑚𝑑𝑑
2𝑉𝑉𝑇𝑇

− ln [ 2𝑡𝑡𝑑𝑑𝑠𝑠 √
2𝜀𝜀𝑑𝑑𝑠𝑠𝑘𝑘𝑏𝑏𝑆𝑆  
𝑞𝑞2𝑛𝑛𝑠𝑠

] , 

which implies: 

𝛽𝛽𝑠𝑠 =
2
𝑡𝑡𝑑𝑑𝑠𝑠
√2𝜀𝜀𝑑𝑑𝑠𝑠𝑘𝑘𝑏𝑏𝑆𝑆  𝑞𝑞2𝑛𝑛𝑠𝑠

𝑒𝑒
𝑉𝑉𝑔𝑔−∆𝜒𝜒𝑚𝑚𝑑𝑑

2𝑉𝑉𝑇𝑇 .  (89) 

Similarly,    

𝛽𝛽𝑑𝑑 =
2
𝑡𝑡𝑑𝑑𝑠𝑠
√2𝜀𝜀𝑑𝑑𝑠𝑠𝑘𝑘𝑏𝑏𝑆𝑆  𝑞𝑞2𝑛𝑛𝑠𝑠

𝑒𝑒
𝑉𝑉𝑔𝑔−∆𝜒𝜒𝑚𝑚𝑑𝑑−𝑉𝑉𝑑𝑑𝑑𝑑

2𝑉𝑉𝑇𝑇   (90) 

Since 𝑔𝑔𝑟𝑟(𝛽𝛽) =
𝛽𝛽
2, the (75) reduces to:  

𝐼𝐼𝑑𝑑𝑠𝑠,𝑆𝑆𝑆𝑆𝑆𝑆 = 𝜇𝜇𝑛𝑛
2𝑊𝑊
𝐿𝐿
2𝜀𝜀𝑑𝑑𝑠𝑠
𝑡𝑡𝑑𝑑𝑠𝑠
(2𝑉𝑉𝑆𝑆)2 [

𝛽𝛽𝑑𝑑2
2 −

𝛽𝛽𝑑𝑑2

2 ]  (91) 

On substituting (89) and (90) in (91) will finally yield the 
𝐼𝐼𝑑𝑑𝑠𝑠,𝑆𝑆𝑆𝑆𝑆𝑆 model for the subthreshold region. 

𝐼𝐼𝑑𝑑𝑠𝑠,𝑆𝑆𝑆𝑆𝑆𝑆 = 𝜇𝜇𝑛𝑛
𝑊𝑊
𝐿𝐿 𝑘𝑘𝑏𝑏𝑇𝑇𝑛𝑛𝑖𝑖𝑡𝑡𝑠𝑠𝑖𝑖𝑒𝑒

𝑉𝑉𝑔𝑔−∆𝜒𝜒𝑚𝑚𝑑𝑑
𝑉𝑉𝑇𝑇 (1 − 𝑒𝑒

−𝑉𝑉𝑑𝑑𝑑𝑑
𝑉𝑉𝑇𝑇 )  (92) 

Combining the 𝐼𝐼𝑑𝑑𝑠𝑠,𝐿𝐿𝐿𝐿𝐿𝐿 (81), 𝐼𝐼𝑑𝑑𝑠𝑠,𝑆𝑆𝑆𝑆𝑆𝑆 (88), and 𝐼𝐼𝑑𝑑𝑠𝑠,𝑆𝑆𝑆𝑆𝑆𝑆 (92) for 
the different regions namely linear, saturation, and 
subthreshold, respectively, the complete 𝐼𝐼𝑑𝑑𝑠𝑠 model is written 
as: 

𝐼𝐼𝑑𝑑𝑠𝑠 =

{
  
 
 

  
 
 𝜇𝜇𝑊𝑊𝐿𝐿 𝑉𝑉𝑆𝑆𝑞𝑞𝑛𝑛𝑖𝑖𝑡𝑡𝑠𝑠𝑖𝑖𝑒𝑒

𝑉𝑉𝑔𝑔𝑑𝑑−∆𝜒𝜒𝑚𝑚𝑑𝑑
𝑉𝑉𝑇𝑇 (1 − 𝑒𝑒−

𝑉𝑉𝑑𝑑𝑑𝑑
𝑉𝑉𝑇𝑇 )

2𝜇𝜇𝐶𝐶𝑜𝑜𝑜𝑜
𝑊𝑊
𝐿𝐿 (𝑉𝑉𝑔𝑔𝑠𝑠 − 𝑉𝑉𝑡𝑡ℎ −

𝑉𝑉𝑑𝑑𝑠𝑠
2 )𝑉𝑉𝑑𝑑𝑠𝑠

𝜇𝜇𝐶𝐶𝑜𝑜𝑜𝑜
𝑊𝑊
𝐿𝐿 [(𝑉𝑉𝑔𝑔𝑠𝑠 − 𝑉𝑉𝑡𝑡ℎ) − 8𝑟𝑟𝑉𝑉𝑆𝑆

2𝑒𝑒
𝑉𝑉𝑔𝑔𝑑𝑑−𝑉𝑉0−𝑉𝑉𝑑𝑑𝑑𝑑

𝑉𝑉𝑇𝑇 ]

 (93) 

Equation (93) is the long channel core 𝐼𝐼𝑑𝑑𝑠𝑠 model for DG 
MOSFETs which has been subsequently augmented with 
various physical effects like SCE, quantum mechanical effect, 
and low and high field transport in order to develop 
𝐼𝐼𝑑𝑑𝑠𝑠 models [22, 23] for short-channel DG MOSFETs. Fig. 5 
shows the 𝐼𝐼𝑑𝑑𝑠𝑠 characteristics obtained from (93) for an undoped 
DG MOSFET with a mid-gap metal gate, in comparison with 
the characteristics obtained through solving the 𝛽𝛽 from (27) by 
the method given by Yu et al. [25]. A constant mobility 
𝜇𝜇𝑛𝑛 =300 cm2/(Vs) [19,25,26] has been considered in numerical 
simulation. The 𝐼𝐼𝑑𝑑𝑠𝑠 models in [19, 22−27] are based on 
assumptions of constant electron mobility in order to validate 
the results with the simulated data. Constant mobility in the 𝐼𝐼𝑑𝑑𝑠𝑠 
model is a strong assumption [59] since the mobility gets 
affected by the vertical and horizontal electric field due to the 
𝑉𝑉𝑔𝑔 and 𝑉𝑉𝑑𝑑𝑠𝑠 respectively. The 𝐼𝐼𝑑𝑑𝑠𝑠 models [28, 29] considered the 
Caughey-Thomas mobility model [60] while the models in [30, 

 
(a) 

 

 
(b) 

 
Fig. 5. Characteristics of a long-channel DG MOSFET with 𝐿𝐿 = 1 µm, 
𝑊𝑊 = 1 µm, 𝑡𝑡𝑠𝑠𝑖𝑖 = 5 nm, and 𝑡𝑡𝑜𝑜𝑜𝑜 = 1.5 nm obtained from model (93) in 
comparison with the results obt ained through using the method given by Yu 
et al. [25] (a) output characteristics, (b) transfer characteristics. 
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31] took into account the Lombardi CVT mobility model [61] 
to depict the drain current characteristics. 

III. MODELS FOR SHORT CHANNEL DG MOSFETS 

A. Electrostatic Potential Models 
In the short-channel devices, due to SCEs the electric fields 

from the source and drain encroach horizontally into the 
channel and thus introduce a second dimension (𝑦𝑦) [Fig. 6] to 
the channel electrostatics 𝜙𝜙(𝑥𝑥, 𝑦𝑦) [11]. The modeling for 
nanoscale (short-channel) DG MOSFETs solves 2-D Poisson’s 
equation in order to derive the analytical 𝜙𝜙(𝑥𝑥, 𝑦𝑦) model. The 
approach adopted in [33−35], derived the 𝜙𝜙(𝑥𝑥, 𝑦𝑦) using 
superposition method where the 2-D Poisson’s equation split 
into 1-D Poisson and 2-D Laplace equation. The reported 
papers [20],[32],[36−38] adopted parabolic potential 
approximation, where 𝜙𝜙(𝑥𝑥, 𝑦𝑦) is obtained using a parabolic 
function in terms of 𝑥𝑥 and 𝑦𝑦. This section describes the 𝜙𝜙(𝑥𝑥, 𝑦𝑦) 
model given by Tsormpatzoglou et al. [20] in order to address 
the modeling scheme for short-channel (𝐿𝐿 = 30 nm) DG 
MOSFET. 

 
1) Tsormpatzoglou et al. [20]:  
Tsormpatzoglou et al. [20] presented an analytical 

expression (94) of the 𝜙𝜙(𝑥𝑥, 𝑦𝑦) along the channel of lightly-
doped symmetrical DG MOSFET in weak inversion: 

𝜙𝜙(𝑥𝑥, 𝑦𝑦) = 1

𝑒𝑒
2𝐿𝐿
𝜆𝜆𝑥𝑥−1

[(𝑉𝑉𝑏𝑏𝑏𝑏 + 𝑉𝑉𝑑𝑑𝑑𝑑 − 𝐴𝐴𝑥𝑥) (𝑒𝑒
𝐿𝐿+𝑦𝑦
𝜆𝜆𝑥𝑥 − 𝑒𝑒

𝐿𝐿−𝑦𝑦
𝜆𝜆𝑥𝑥 ) +

                    (𝑉𝑉𝑏𝑏𝑏𝑏 − 𝐴𝐴𝑥𝑥) (𝑒𝑒
2𝐿𝐿−𝑦𝑦

𝜆𝜆𝑥𝑥 − 𝑒𝑒
𝑦𝑦

𝜆𝜆𝑥𝑥) + 𝐴𝐴𝑥𝑥 (𝑒𝑒
2𝐿𝐿
𝜆𝜆𝑥𝑥 − 1)] , 

(94) 

with  𝐴𝐴𝑥𝑥 = 𝑉𝑉𝑔𝑔 − ∆𝜒𝜒𝑚𝑚𝑑𝑑 − 𝑞𝑞𝑁𝑁𝑑𝑑𝑏𝑏
𝜀𝜀𝑠𝑠𝑠𝑠𝑡𝑡𝑜𝑜𝑥𝑥𝑡𝑡𝑠𝑠𝑠𝑠+𝜀𝜀𝑜𝑜𝑥𝑥(𝑡𝑡𝑠𝑠𝑠𝑠−𝑥𝑥)𝑥𝑥

2𝜀𝜀𝑜𝑜𝑥𝑥𝜀𝜀𝑠𝑠𝑠𝑠
. In case of a 

lightly-doped body, ∆𝜒𝜒𝑚𝑚𝑑𝑑 = −𝑉𝑉𝑇𝑇 ln(𝑁𝑁𝑑𝑑𝑏𝑏/𝑛𝑛𝑏𝑏) for mid-gap metal 
gates [Fig. 3], 𝑉𝑉𝑏𝑏𝑏𝑏 = 𝑉𝑉𝑇𝑇 ln(𝑁𝑁𝑑𝑑𝑏𝑏𝑁𝑁𝑑𝑑𝑑𝑑/𝑛𝑛𝑏𝑏

2) is the built-in potential, 
and 𝑁𝑁𝑑𝑑𝑑𝑑 is the doping concentration of source and drain. 𝜆𝜆𝑥𝑥 =

√𝜀𝜀𝑠𝑠𝑠𝑠𝑡𝑡𝑜𝑜𝑥𝑥𝑡𝑡𝑠𝑠𝑠𝑠
2𝜀𝜀𝑜𝑜𝑥𝑥

(1 + 𝜀𝜀𝑜𝑜𝑥𝑥𝑥𝑥
𝜀𝜀𝑠𝑠𝑠𝑠𝑡𝑡𝑜𝑜𝑥𝑥

− 𝜀𝜀𝑜𝑜𝑥𝑥𝑥𝑥2

𝜀𝜀𝑠𝑠𝑠𝑠𝑡𝑡𝑜𝑜𝑥𝑥𝑡𝑡𝑠𝑠𝑠𝑠
) is the natural channel length 

proposed by Yan et al. [9] which is described more accurately 
as a function channel depth in short-channel devices. The 2-D 
extra potential ∆𝜙𝜙(𝑥𝑥, 𝑦𝑦) induced in the channel due to SCEs is 
described by: 

∆𝜙𝜙(𝑥𝑥, 𝑦𝑦) = 1

𝑒𝑒
2𝐿𝐿
𝜆𝜆𝑥𝑥−1

[(𝑉𝑉𝑏𝑏𝑏𝑏 + 𝑉𝑉𝑑𝑑𝑑𝑑 − 𝐴𝐴𝑥𝑥) (𝑒𝑒
𝐿𝐿+𝑦𝑦
𝜆𝜆𝑥𝑥 −

𝑒𝑒
𝐿𝐿−𝑦𝑦
𝜆𝜆𝑥𝑥 ) + (𝑉𝑉𝑏𝑏𝑏𝑏 − 𝐴𝐴𝑥𝑥) (𝑒𝑒

2𝐿𝐿−𝑦𝑦
𝜆𝜆𝑥𝑥 − 𝑒𝑒

𝑦𝑦
𝜆𝜆𝑥𝑥)] . 

(95) 

Based on the 2-D extra potential induced in the channel due 
to SCEs, a semi-analytical expression for the subthreshold drain 
current is derived.  In the subthreshold condition, the diffusion 
current dominates due to weak inversion [62]. For weak 
inversion, the drain current in the subthreshold condition of a 
long channel device can be expressed as: 

𝐼𝐼𝑑𝑑𝑑𝑑,𝑙𝑙𝑙𝑙𝑙𝑙𝑔𝑔 = 𝑊𝑊
𝐿𝐿 𝑉𝑉𝑇𝑇𝜇𝜇𝑙𝑙𝑄𝑄𝑏𝑏𝑑𝑑 (1 − 𝑒𝑒−𝑉𝑉𝑑𝑑𝑠𝑠

𝑉𝑉𝑇𝑇 ) , (96) 

where 𝑄𝑄𝑖𝑖𝑖𝑖 = 𝑞𝑞𝑛𝑛𝑖𝑖
2

𝑁𝑁𝑖𝑖𝑖𝑖
𝑡𝑡𝑖𝑖𝑖𝑖𝑒𝑒

𝜙𝜙𝑖𝑖
𝑉𝑉𝑇𝑇 is the inversion charge sheet density at 

the source end, and 𝜙𝜙𝑖𝑖 = 𝐴𝐴𝑥𝑥=0 is the surface potential for long 
channel device. The drain current expression for a short-
channel device is obtained by dividing the long channel case by 
correction factor (𝐶𝐶𝐶𝐶). 

𝐼𝐼𝑑𝑑𝑖𝑖,𝑖𝑖ℎ𝑜𝑜𝑜𝑜𝑡𝑡 = 𝑊𝑊
𝐿𝐿

𝑉𝑉𝑇𝑇𝜇𝜇𝑛𝑛𝑄𝑄𝑖𝑖𝑖𝑖
1

𝐶𝐶𝐶𝐶
(1 − 𝑒𝑒−𝑉𝑉𝑑𝑑𝑖𝑖

𝑉𝑉𝑇𝑇 ) , (97) 

where 𝐶𝐶𝐶𝐶 = 1
𝐿𝐿 ∫ 1

𝑡𝑡𝑠𝑠𝑠𝑠
∫ 𝑒𝑒−∆𝜙𝜙(𝑥𝑥,𝑦𝑦)

𝑉𝑉𝑇𝑇 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦𝑡𝑡𝑠𝑠𝑠𝑠
0

𝐿𝐿
0 . Here, the 𝐶𝐶𝐶𝐶 has to be 

calculated numerically and hence the model is not applicable in 
developing a compact model for DG MOSFETs. However, the 
same can be used to properly design new DG MOSFETS 

 
 
Fig. 7. Transfer characteristics (in semi-logarithmic scale) in the subthreshold 
region of short-channel DG MOSFET obtained from solving (97) through the 
numerical method.  
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Fig. 6. The cross-sectional view of a short-channel n-type symmetric DG 
MOSFET along with the geometrical coordinates. 
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because it is rather a semi-analytical model of SCE. Also, 
equation (97) allows extrapolation of various DG device 
specifications. The subthreshold drain current characteristics of 
DG MOSFET shown in Fig. 7 with 𝑊𝑊 = 1µm, 𝑡𝑡𝑠𝑠𝑠𝑠 = 5 nm, 
𝑡𝑡𝑜𝑜𝑜𝑜 = 1 nm, and 𝜇𝜇𝑛𝑛 =500 cm2/Vs for different values of 𝐿𝐿 at 
𝑉𝑉𝑑𝑑𝑠𝑠 = 0.02 V have been implemented using MATLAB. In 
addition, Simpson's one-third method [54] has been employed 
to evaluate the 𝐶𝐶𝐶𝐶. 
 
The MATLAB code to obtain the subthreshold drain 
current characteristics [Fig. 7] 
 
W=1000*10^(-9);                    % Channel width 
tsi=5*10^(-9);                    % Body thickness 
tox=1*10^(-9);              % Gate oxide thickness                                   
Eo=8.85*10^(-12);      %Permittivity of free space 
Eox=3.9*Eo;      %Dielectric permittivity of oxide 
Esi=11.68*Eo;         %________________ of silicon 
Nsi=10^(21);                 % Body doping density 
Nsd=5*(10^25);                 %S/D doping density 
ni=1.45*10^(16);   %Intrinsic charge 
concentration 
L=[10 15 20 30 50]*10^(-9);          % Different// 
                      % channel lengths 
considered 
u=500*10^(-4);             % Mobility of electrons 
K=1.38*10^(-23);              % Boltzmann constant 
T=300;                          % Room temperature 
q=1.6*10^(-19);                % Elementary charge 
VT=(K*T)/q;               % Thermal voltage = 26mV 
Vbi=VT*log(Nsi*Nsd/(ni^2));   % Built-in      
% potential 
Vfb=-VT*log(Nsi/ni);           % Flat band voltage 
Vds=0.02;                % Drain to source voltage 
Vg=0:0.1:0.6;                 % Gate voltage sweep 
Cox=Eox/tox;                   % Oxide capacitance 
%------- Simpson’s 1/3rd method begins--------- % 
h1=((tsi-0)/10);  
x=[0 h1 2*h1 3*h1 4*h1 5*h1 6*h1 7*h1 8*h1 9*h1 
10*h1]; 
for l=1:length(L) 
h2=(L(l)-0)/10; 
y=[0 h2 2*h2 3*h2 4*h2 5*h2 6*h2 7*h2 8*h2 9*h2 
10*h2]; 
 
for k=1:length(Vgs) 
Vg(k)=Vgs(k)-Vfb; 
for j=1:length(y) 
for i=1:length(x) 
xterm(i)=(1+((Eox*x(i))/(Esi*tox))-
((Eox*(x(i)^2))/(Esi*tox*tsi))); 
lambda(i)=sqrt(((Esi*tox*tsi)/(2*Eox))*xterm(i))
; 
delphi(i)=(1/(exp((2*L(l))/lambda(i))-
1))*((Vbi+Vd-Vg(k))*(exp((L(l)+y(j))/lambda(i))  
-exp((L(l)-y(j))/lambda(i)))+(Vbi-
 Vg(k))*(exp((2*L(l)-y(j))/lambda(i))-
exp(y(j)/lambda(i)))); 
 
f(i)=exp(-(delphi(i)/VT)); 
end 

    
I1(j)=(h1/3)*((f(1)+f(11))+4*(f(2)+f(4)+f(6)+f(8
)+f(10))+2*(f(3)+f(5)+f(7)+f(9))); 
End 
    
I2(k)=(h2/3)*((I1(1)+I1(11))+4*(I1(2)+I1(4)+I1(6
)+I1(8))+2*(I1(3)+I1(5)+I1(7)+I1(9))); 
    CF(k)=(1/(tsi*L(l)))*I2(k); 
    phis(k)=(Vgs(k)-Vfb)-((q*Nsi*tsi)/(2*Cox)); 
    
Qis(k)=(q*(ni^2)/Nsi)*tsi*exp((q*phis(k))/(K*T))
; 
Id(l,k)=(W/L(l))*(K*T/q)*u*Qis(k)*(1/CF(k))*(1-
exp((-q*Vd)/(K*T))); 
end 
end 
plot(Vg,log10(Id(1,:)),Vg,log10(Id(2,:)),Vg,log1
0(Id(3,:)),Vg,log10(Id(4,:)),Vg,log10(Id(5,:))); 
xlabel('V_{g} (V)'); 
ylabel('I_{ds} (A)') 
 

The 𝜙𝜙 model (94) is derived based on the solution of 2-D 
Poisson’s equation under the consideration of fixed charge 
density only; hence the model is not valid in strong inversion 
regime. Notable 𝜙𝜙 models [33−35] are derived using the 
superposition method to validate the same in strong inversion 
regime. Validity of any 𝜙𝜙 model in the strong inversion regime 
signifies that the model can depict the variation in electrostatic 
potential characteristics with respect to the change in 𝑉𝑉𝑔𝑔. Hamid 
et al. [33] derived the 𝜙𝜙 model considering only the effect of 
mobile charge density in the 2-D Poisson’s equation. The 
concept of cross-over point [63], which was not put into 
emphasis in  [33], has been  discussed later in the  𝜙𝜙 model 
given Ray and Mahapatra [34]. The 𝜙𝜙 models given by Oh et 
al. [35] and Liang et al. [39] did not consider both fixed as well 
as mobile charge densities, however, Liang et al. [39] derived 
the 𝜙𝜙 model by the scale length method [64]. The 𝜙𝜙 modeling 
scheme including the fixed charge density in the 2-D Poisson’s 
equation has been further extended by Pandey et al. [40] and 
the same was solved through the Green’s function method [65]. 
Despite differences in mathematical equations, the potential 
distribution characteristics generated by the 𝜙𝜙 models in [39] 
and [40] are found to be consistent with each other. 

B. Threshold Voltage Models 
1) Tsormpatzoglou et al. [21]:  
A 𝑉𝑉𝑡𝑡ℎ model in [21] of an undoped symmetrical DG 

MOSFET developed based on the 𝜙𝜙(𝑜𝑜, 𝑦𝑦) model (94) given by 
Tsormpatzoglou et al. [20]. This short-channel 𝑉𝑉𝑡𝑡ℎ model was 
derived by considering only the fixed charge density in 
Poisson’s equation subjected to the condition 𝐿𝐿/𝑡𝑡𝑠𝑠𝑠𝑠 >2. The 
channel position at which the potential along the effective 
conductive path reaches to its minimum value is called virtual 
cathode (𝑦𝑦𝑚𝑚𝑠𝑠𝑛𝑛) , which plays an important role in deriving the 
threshold voltage expression. The explicit expression for 𝑉𝑉𝑡𝑡ℎ is 
given as:  

𝑉𝑉𝑡𝑡ℎ = ∆𝜒𝜒𝑚𝑚𝑠𝑠 +  𝐴𝐴𝑉𝑉𝑇𝑇 ln ( 𝑄𝑄𝑡𝑡ℎ
𝑛𝑛𝑖𝑖𝑡𝑡𝑠𝑠𝑖𝑖

)  (98) 



ELECTRONICS, VOL. 24, NO. 1, JUNE 202026

−𝐵𝐵 [𝑉𝑉𝑏𝑏𝑏𝑏 − 𝑉𝑉𝑇𝑇 ln ( 𝑄𝑄𝑡𝑡ℎ
𝑛𝑛𝑖𝑖𝑡𝑡𝑠𝑠𝑖𝑖

)]
1
2 [𝑉𝑉𝑏𝑏𝑏𝑏 + 𝑉𝑉𝑑𝑑𝑑𝑑 −

𝑉𝑉𝑇𝑇 ln ( 𝑄𝑄𝑡𝑡ℎ
𝑛𝑛𝑖𝑖𝑡𝑡𝑠𝑠𝑖𝑖

)]
1
2  

−𝐶𝐶(2𝑉𝑉𝑏𝑏𝑏𝑏 + 𝑉𝑉𝑑𝑑𝑑𝑑) , 

where 𝐴𝐴 =
(𝑒𝑒

4𝐿𝐿
𝜆𝜆 −2𝑒𝑒

2𝐿𝐿
𝜆𝜆 +1)

(𝑒𝑒
2𝐿𝐿
𝜆𝜆 −1)

4 , 𝐵𝐵 =
2𝑒𝑒

𝐿𝐿
2𝜆𝜆(𝑒𝑒

𝐿𝐿
𝜆𝜆+1)

(𝑒𝑒
2𝐿𝐿
𝜆𝜆 −1)

2 , 𝐶𝐶 =
2(𝑒𝑒

3𝐿𝐿
𝜆𝜆 −2𝑒𝑒

2𝐿𝐿
𝜆𝜆 +𝑒𝑒

𝐿𝐿
𝜆𝜆)

(𝑒𝑒
2𝐿𝐿
𝜆𝜆 −1)

4 . 

𝜆𝜆 is the natural channel length along the effective conductive 

path = √𝜀𝜀𝑠𝑠𝑖𝑖𝑡𝑡𝑜𝑜𝑜𝑜𝑡𝑡𝑠𝑠𝑖𝑖
2𝜀𝜀𝑜𝑜𝑜𝑜

(1 + 𝜀𝜀𝑜𝑜𝑜𝑜𝑡𝑡𝑠𝑠𝑖𝑖
4𝜀𝜀𝑠𝑠𝑖𝑖𝑡𝑡𝑜𝑜𝑜𝑜

− 𝜀𝜀𝑜𝑜𝑜𝑜𝑡𝑡𝑠𝑠𝑖𝑖
16𝜀𝜀𝑠𝑠𝑖𝑖𝑡𝑡𝑜𝑜𝑜𝑜

). For long channel 

device, 𝐴𝐴 =1, and the parameter 𝐵𝐵 and 𝐶𝐶 tend to zero and thus, 
the 𝑉𝑉𝑡𝑡ℎ expression reduces to that of a long-channel DG 
MOSFET: 𝑉𝑉𝑡𝑡ℎ = ∆𝜒𝜒𝑚𝑚𝑑𝑑 + 𝑉𝑉𝑇𝑇 ln ( 𝑄𝑄𝑡𝑡ℎ

𝑛𝑛𝑖𝑖𝑡𝑡𝑠𝑠𝑖𝑖
) as given by Chen et 

al. [18].  The 𝑄𝑄𝑡𝑡ℎ for long channel DG MOSFET has been 
determined to be about = 3.2×1010cm-2.  Whereas, for a short-
channel device, the 𝑄𝑄𝑡𝑡ℎ is dependent upon the 𝐿𝐿, 𝑡𝑡𝑜𝑜𝑜𝑜, 𝑡𝑡𝑑𝑑𝑏𝑏, and 
𝑉𝑉𝑑𝑑𝑑𝑑 by the relationship: 

𝑄𝑄𝑡𝑡ℎ = 1011 [1 − (5 + 𝑉𝑉𝑑𝑑𝑑𝑑) 𝜆𝜆
2𝐿𝐿]

2
 cm-2. (99) 

C. Drain-Current Models 
1) Tsormpatzoglou et al. [22]:  
In this model, instead of the numerical approach, an 

analytical approach is adopted. Various effects like SCEs, 
series resistance, and CLM are included. Two different 
equations for subthreshold 𝐼𝐼𝑑𝑑𝑑𝑑,𝑆𝑆𝑆𝑆𝐵𝐵 and strong inversion 𝐼𝐼𝑑𝑑𝑑𝑑,𝑆𝑆𝐼𝐼 
have been combined through interpolation method. The 
detailed derivation of  𝐼𝐼𝑑𝑑𝑑𝑑,𝑆𝑆𝐼𝐼 is as follows. 

The 𝜙𝜙 model in [16] has been utilized to model the 𝐼𝐼𝑑𝑑𝑑𝑑,𝑆𝑆𝐼𝐼, 
and the model derivation starts from the expression (27), which 
will imply: 

ln 𝛽𝛽
𝑐𝑐𝑜𝑜𝑑𝑑 𝛽𝛽 + 2𝑟𝑟𝑟𝑟 tan 𝑟𝑟 =  

𝑉𝑉𝑔𝑔−∆𝜒𝜒𝑚𝑚𝑠𝑠−𝜙𝜙𝐹𝐹
2𝑉𝑉𝑇𝑇

− 𝑙𝑙𝑙𝑙 [ 2
𝑡𝑡𝑠𝑠𝑖𝑖

√2𝜀𝜀𝑠𝑠𝑖𝑖𝑘𝑘𝑏𝑏𝑇𝑇
𝑞𝑞2𝑛𝑛𝑖𝑖

],  
(100) 

ln 𝛽𝛽 sin 𝛽𝛽
cos 𝛽𝛽 sin 𝛽𝛽 + 2𝑟𝑟𝑟𝑟 tan 𝑟𝑟 =  

𝑉𝑉𝑔𝑔−∆𝜒𝜒𝑚𝑚𝑠𝑠−𝜙𝜙𝐹𝐹
2𝑉𝑉𝑇𝑇

− ln [ 2
𝑡𝑡𝑠𝑠𝑖𝑖

√2𝜀𝜀𝑠𝑠𝑖𝑖𝑘𝑘𝑏𝑏𝑇𝑇
𝑞𝑞2𝑛𝑛𝑖𝑖

],  
(101) 

ln 𝑟𝑟 tan 𝑟𝑟 − ln sin 𝑟𝑟 + 2𝑟𝑟𝑟𝑟 tan 𝑟𝑟 = 

     𝑉𝑉𝑔𝑔−∆𝜒𝜒𝑚𝑚𝑠𝑠−𝜙𝜙𝐹𝐹
2𝑉𝑉𝑇𝑇

− ln [ 2
𝑡𝑡𝑠𝑠𝑖𝑖

√2𝜀𝜀𝑠𝑠𝑖𝑖𝑘𝑘𝑏𝑏𝑇𝑇
𝑞𝑞2𝑛𝑛𝑖𝑖

] , (102) 

Replacing the term “𝑟𝑟 tan 𝑟𝑟” in the 𝑄𝑄𝑏𝑏𝑛𝑛𝑖𝑖(𝑦𝑦) expression 
(67) by 𝑞𝑞𝑏𝑏 (normalized charge density) and substituting in (63) 
will yield the 𝐼𝐼𝑑𝑑𝑑𝑑,𝑆𝑆𝑆𝑆 expression as: 

𝐼𝐼𝑑𝑑𝑑𝑑,𝑆𝑆𝑆𝑆 = 𝜇𝜇𝑛𝑛 (2𝑊𝑊
𝐿𝐿 ) ∫ 4𝜀𝜀𝑠𝑠𝑖𝑖𝑘𝑘𝑏𝑏𝑇𝑇

𝑞𝑞𝑡𝑡𝑠𝑠𝑖𝑖
𝑞𝑞𝑏𝑏𝑑𝑑𝜙𝜙𝐹𝐹

𝑉𝑉𝑑𝑑𝑠𝑠
0  . (103) 

In strong inversion, β → (π/2), implies that (102) reduces 
to: 

ln 𝑟𝑟 tan 𝑟𝑟 + 2𝑟𝑟𝑟𝑟 tan 𝑟𝑟 =  
𝑉𝑉𝑔𝑔−∆𝜒𝜒𝑚𝑚𝑠𝑠−𝜙𝜙𝐹𝐹

2𝑉𝑉𝑇𝑇
− ln [ 2

𝑡𝑡𝑠𝑠𝑖𝑖
√2𝜀𝜀𝑠𝑠𝑖𝑖𝑘𝑘𝑏𝑏𝑇𝑇

𝑞𝑞2𝑛𝑛𝑖𝑖
].  

(104) 

Substituting 𝑞𝑞𝑏𝑏 in (104): 

ln 𝑞𝑞𝑏𝑏 + 2𝑟𝑟𝑞𝑞𝑏𝑏 = 𝑉𝑉𝑔𝑔−∆𝜒𝜒𝑚𝑚𝑠𝑠−𝜙𝜙𝐹𝐹
2𝑉𝑉𝑇𝑇

− ln [ 2
𝑡𝑡𝑠𝑠𝑖𝑖

√2𝜀𝜀𝑠𝑠𝑖𝑖𝑘𝑘𝑏𝑏𝑇𝑇
𝑞𝑞2𝑛𝑛𝑖𝑖

] . (105) 

Differentiating (105) with respect to 𝑞𝑞𝑏𝑏 will yield: 𝑑𝑑𝜙𝜙𝐹𝐹 =
−2𝑉𝑉𝑇𝑇[2𝑟𝑟 + (1/𝑞𝑞𝑏𝑏)]𝑑𝑑𝑞𝑞𝑏𝑏. On substituting the 𝑑𝑑𝜙𝜙𝐹𝐹 in (103): 

𝐼𝐼𝑑𝑑𝑑𝑑,𝑆𝑆𝑆𝑆 = −𝜇𝜇𝑛𝑛 (2𝑊𝑊
𝐿𝐿 ) ∫ 4𝜀𝜀𝑠𝑠𝑖𝑖𝑘𝑘𝑏𝑏𝑇𝑇

𝑞𝑞𝑡𝑡𝑠𝑠𝑖𝑖
𝑞𝑞𝑏𝑏2𝑉𝑉𝑇𝑇 (2𝑟𝑟 + 1

𝑞𝑞𝑖𝑖
) 𝑑𝑑𝑞𝑞𝑏𝑏

𝑞𝑞𝑖𝑖𝑑𝑑
𝑞𝑞𝑖𝑖𝑠𝑠

  

       = 𝜇𝜇𝑛𝑛 (2𝑊𝑊
𝐿𝐿 ) (2𝜀𝜀𝑠𝑠𝑖𝑖

𝑡𝑡𝑠𝑠𝑖𝑖
) (2𝑘𝑘𝑏𝑏𝑇𝑇

𝑞𝑞 )
2

[2𝑟𝑟 𝑞𝑞𝑖𝑖
2

2 + 𝑞𝑞𝑏𝑏]𝑞𝑞𝑖𝑖𝑑𝑑

𝑞𝑞𝑖𝑖𝑠𝑠
   

 = 𝜇𝜇𝑛𝑛 (2𝑊𝑊
𝐿𝐿 ) (2𝜀𝜀𝑠𝑠𝑖𝑖

𝑡𝑡𝑠𝑠𝑖𝑖
) (2𝑘𝑘𝑏𝑏𝑇𝑇

𝑞𝑞 )
2

[(𝑞𝑞𝑏𝑏𝑑𝑑 − 𝑞𝑞𝑏𝑏𝑑𝑑) + 𝜀𝜀𝑠𝑠𝑖𝑖𝑡𝑡𝑜𝑜𝑜𝑜
𝜀𝜀𝑜𝑜𝑜𝑜𝑡𝑡𝑠𝑠𝑖𝑖

(𝑞𝑞𝑏𝑏𝑑𝑑
2 − 𝑞𝑞𝑏𝑏𝑑𝑑

2 )], 
(106) 

where 𝑞𝑞𝑏𝑏𝑑𝑑, 𝑞𝑞𝑏𝑏𝑑𝑑 are the values of 𝑞𝑞𝑏𝑏 at source (𝜙𝜙𝐹𝐹 = 0) and drain 
(𝜙𝜙𝐹𝐹 = 𝑉𝑉𝑑𝑑𝑑𝑑) ends respectively. The expression for 𝑞𝑞𝑏𝑏 can be 
derived from (105) as: 

 ln [2𝑞𝑞𝑖𝑖
𝑡𝑡𝑠𝑠𝑖𝑖

√2𝜀𝜀𝑠𝑠𝑖𝑖𝑘𝑘𝑏𝑏𝑇𝑇
𝑞𝑞2𝑛𝑛𝑖𝑖

] = 𝑞𝑞(𝑉𝑉𝑔𝑔−∆𝜒𝜒𝑚𝑚𝑠𝑠−𝜙𝜙𝐹𝐹)
2𝑘𝑘𝑏𝑏𝑇𝑇 − 2𝜀𝜀𝑠𝑠𝑖𝑖𝑡𝑡𝑜𝑜𝑜𝑜

𝜀𝜀𝑜𝑜𝑜𝑜𝑡𝑡𝑠𝑠𝑖𝑖
𝑞𝑞𝑏𝑏. (107) 

On rearranging the terms of (107):  

𝑞𝑞𝑏𝑏𝑒𝑒
2𝜀𝜀𝑠𝑠𝑖𝑖𝑡𝑡𝑜𝑜𝑜𝑜
𝜀𝜀𝑜𝑜𝑜𝑜𝑡𝑡𝑠𝑠𝑖𝑖

𝑞𝑞𝑖𝑖 = 𝑡𝑡𝑠𝑠𝑖𝑖
2 √ 𝑞𝑞2𝑛𝑛𝑖𝑖

2𝜀𝜀𝑠𝑠𝑖𝑖𝑘𝑘𝑏𝑏𝑇𝑇 𝑒𝑒
𝑞𝑞(𝑉𝑉𝑔𝑔−∆𝜒𝜒𝑚𝑚𝑠𝑠−𝜙𝜙𝐹𝐹)

2𝑘𝑘𝑏𝑏𝑇𝑇  . (108) 

Multiplying on both sides of (108) by (2𝜀𝜀𝑑𝑑𝑏𝑏𝑡𝑡𝑜𝑜𝑜𝑜/𝜀𝜀𝑜𝑜𝑜𝑜𝑡𝑡𝑑𝑑𝑏𝑏): 

2𝜀𝜀𝑠𝑠𝑖𝑖𝑡𝑡𝑜𝑜𝑜𝑜
𝜀𝜀𝑜𝑜𝑜𝑜𝑡𝑡𝑠𝑠𝑖𝑖

𝑞𝑞𝑏𝑏𝑒𝑒
2𝜀𝜀𝑠𝑠𝑖𝑖𝑡𝑡𝑜𝑜𝑜𝑜
𝜀𝜀𝑜𝑜𝑜𝑜𝑡𝑡𝑠𝑠𝑖𝑖

𝑞𝑞𝑖𝑖 = 𝑞𝑞𝑡𝑡𝑜𝑜𝑜𝑜
𝜀𝜀𝑜𝑜𝑜𝑜

√𝑛𝑛𝑖𝑖𝜀𝜀𝑠𝑠𝑖𝑖
2𝑘𝑘𝑏𝑏𝑇𝑇 𝑒𝑒

𝑞𝑞(𝑉𝑉𝑔𝑔−∆𝜒𝜒𝑚𝑚𝑠𝑠−𝜙𝜙𝐹𝐹)
2𝑘𝑘𝑏𝑏𝑇𝑇   (109) 

Since, 𝑊𝑊𝑒𝑒𝑊𝑊 = 𝑥𝑥 ⇒ 𝑊𝑊 = Lambert𝑊𝑊(𝑥𝑥), so (109) can be 
transformed using the Lambert𝑊𝑊 function: 

2𝜀𝜀𝑠𝑠𝑖𝑖𝑡𝑡𝑜𝑜𝑜𝑜
𝜀𝜀𝑜𝑜𝑜𝑜𝑡𝑡𝑠𝑠𝑖𝑖

𝑞𝑞𝑏𝑏 = Lambert𝑊𝑊 [𝑞𝑞𝑡𝑡𝑜𝑜𝑜𝑜
𝜀𝜀𝑜𝑜𝑜𝑜

√𝑛𝑛𝑖𝑖𝜀𝜀𝑠𝑠𝑖𝑖
2𝑘𝑘𝑏𝑏𝑇𝑇 𝑒𝑒

𝑞𝑞(𝑉𝑉𝑔𝑔−∆𝜒𝜒𝑚𝑚𝑠𝑠−𝜙𝜙𝐹𝐹)
2𝑘𝑘𝑏𝑏𝑇𝑇 ] , 

 

which will imply:  

𝑞𝑞𝑏𝑏 = 𝜀𝜀𝑜𝑜𝑜𝑜𝑡𝑡𝑠𝑠𝑖𝑖
2𝜀𝜀𝑠𝑠𝑖𝑖𝑡𝑡𝑜𝑜𝑜𝑜

Lambert𝑊𝑊 [𝑞𝑞𝑡𝑡𝑜𝑜𝑜𝑜
𝜀𝜀𝑜𝑜𝑜𝑜

√𝑛𝑛𝑖𝑖𝜀𝜀𝑠𝑠𝑖𝑖
2𝑘𝑘𝑏𝑏𝑇𝑇 𝑒𝑒

𝑞𝑞(𝑉𝑉𝑔𝑔−∆𝜒𝜒𝑚𝑚𝑠𝑠−𝜙𝜙𝐹𝐹)
2𝑘𝑘𝑏𝑏𝑇𝑇 ] . (110) 

The Lambert𝑊𝑊(𝑥𝑥) function in current expression was first 
introduced by Ortiz-Conde et al. [66]. When the channel is 
lightly doped, i.e. 𝑙𝑙 = (𝑙𝑙𝑏𝑏

2/𝑁𝑁𝑑𝑑𝑏𝑏) and to incorporate threshold 
voltage roll-off effect, ∆𝑉𝑉𝑡𝑡ℎ is introduced in (110): 

𝑞𝑞𝑏𝑏 = 𝜀𝜀𝑜𝑜𝑜𝑜𝑡𝑡𝑠𝑠𝑖𝑖
2𝜀𝜀𝑠𝑠𝑖𝑖𝑡𝑡𝑜𝑜𝑜𝑜

Lambert𝑊𝑊 [𝑞𝑞𝑡𝑡𝑜𝑜𝑜𝑜
𝜀𝜀𝑜𝑜𝑜𝑜

√ 𝑛𝑛𝑖𝑖
2𝜀𝜀𝑠𝑠𝑖𝑖

2𝑘𝑘𝑏𝑏𝑇𝑇𝑁𝑁𝑠𝑠𝑖𝑖
𝑒𝑒

𝑞𝑞(𝑉𝑉𝑔𝑔−∆𝜒𝜒𝑚𝑚𝑠𝑠+∆𝑉𝑉𝑡𝑡ℎ−𝜙𝜙𝐹𝐹)
2𝑘𝑘𝑏𝑏𝑇𝑇 ] . 

(111) 

A compact 𝐼𝐼𝑑𝑑𝑑𝑑 model is obtained by combining the 𝐼𝐼𝑑𝑑𝑑𝑑,𝑆𝑆𝑆𝑆 and 
𝐼𝐼𝑑𝑑𝑑𝑑,𝑆𝑆𝑆𝑆𝑆𝑆 through interpolation function.  

𝐼𝐼𝑑𝑑𝑑𝑑 = 𝐼𝐼𝑑𝑑𝑑𝑑,𝑆𝑆𝑆𝑆 × 𝐼𝐼𝑑𝑑𝑑𝑑,𝑆𝑆𝑆𝑆𝑆𝑆

(𝐼𝐼𝑑𝑑𝑑𝑑,𝑆𝑆𝑆𝑆
𝑚𝑚 + 𝐼𝐼𝑑𝑑𝑑𝑑,𝑆𝑆𝑆𝑆𝑆𝑆

𝑚𝑚 )
1
𝑚𝑚

 (112) 
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where 𝐼𝐼𝑑𝑑𝑑𝑑,𝑆𝑆𝑆𝑆𝑆𝑆 = 𝜇𝜇𝑛𝑛 (2𝑊𝑊
𝐿𝐿 ) (𝜀𝜀𝑜𝑜𝑜𝑜

𝑡𝑡𝑜𝑜𝑜𝑜
) (𝑘𝑘𝑏𝑏𝑇𝑇

𝑞𝑞 )
2

𝑒𝑒1.8𝑒𝑒
𝑉𝑉𝑔𝑔−𝑉𝑉𝑡𝑡ℎ

𝜂𝜂𝑉𝑉𝑇𝑇 [1 + 𝑒𝑒
−𝑉𝑉𝑑𝑑𝑑𝑑

𝑉𝑉𝑇𝑇 ]  

and 𝑚𝑚 = 1.9 − √1.2𝑉𝑉𝑑𝑑𝑑𝑑 is a parameter that prevents the 
discontinuity in current characteristics at the transition from 
subthreshold to above-threshold region.  

2) Papathanasiou et al. [23]:  
This model is an improvement over the 𝐼𝐼𝑑𝑑𝑑𝑑 model given by 

Tsormpatzoglou et al. [22]. Papathanasiou et al. [23] provided 
only one equation for 𝐼𝐼𝑑𝑑𝑑𝑑 which is valid in all region of 
operation whereas in [22], two equations were combined 
through interpolation function.  The detailed derivation of 𝐼𝐼𝑑𝑑𝑑𝑑 
model is as follows.  

In the subthreshold regime (𝑉𝑉𝑔𝑔 < 𝑉𝑉𝑡𝑡ℎ), 𝑞𝑞𝑖𝑖
2 term in (106) can 

be approximated as zero, i.e. (𝑞𝑞𝑖𝑖
2 ≈ 0) which implies: 𝑞𝑞𝑖𝑖 →

𝐸𝐸𝐸𝐸𝐸𝐸[𝑞𝑞(𝑉𝑉𝑔𝑔 − ∆𝜒𝜒𝑚𝑚𝑑𝑑 + ∆𝑉𝑉𝑡𝑡ℎ − 𝜙𝜙𝐹𝐹)/2𝑘𝑘𝑏𝑏𝑇𝑇]. So, the expression 
(106) reduces to: 

𝐼𝐼𝑑𝑑𝑑𝑑,𝑆𝑆𝑆𝑆 = 𝜇𝜇𝑛𝑛 (2𝑊𝑊
𝐿𝐿 ) (2𝜀𝜀𝑑𝑑𝑠𝑠

𝑡𝑡𝑑𝑑𝑠𝑠
) (2𝑘𝑘𝑏𝑏𝑇𝑇

𝑞𝑞 )
2

[𝑞𝑞𝑠𝑠𝑑𝑑
2𝑟𝑟 − 𝑞𝑞𝑠𝑠𝑑𝑑

2𝑟𝑟 ]  

         = 𝜇𝜇𝑛𝑛 (2𝑊𝑊
𝐿𝐿 ) (4𝜀𝜀𝑜𝑜𝑜𝑜

𝑡𝑡𝑜𝑜𝑜𝑜
) (2𝑘𝑘𝑏𝑏𝑇𝑇

𝑞𝑞 )
2

[𝑞𝑞𝑖𝑖𝑑𝑑 − 𝑞𝑞𝑖𝑖𝑑𝑑]. (113) 

The 𝐼𝐼𝑑𝑑𝑑𝑑,𝑆𝑆𝑆𝑆𝑆𝑆 can be approximated as [22]:  

𝐼𝐼𝑑𝑑𝑑𝑑,𝑆𝑆𝑆𝑆𝑆𝑆 = 𝜇𝜇𝑛𝑛 (2𝑊𝑊
𝐿𝐿 ) (𝜀𝜀𝑜𝑜𝑜𝑜

𝑡𝑡𝑜𝑜𝑜𝑜
) (𝑘𝑘𝑏𝑏𝑇𝑇

𝑞𝑞 )
2

𝑒𝑒0.8[𝑞𝑞𝑖𝑖𝑑𝑑,𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑞𝑞𝑖𝑖𝑑𝑑,𝑆𝑆𝑆𝑆𝑆𝑆],    (114) 

where 𝑞𝑞𝑖𝑖,𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐸𝐸𝐸𝐸𝐸𝐸[𝑞𝑞(𝑉𝑉𝑔𝑔 − 𝑉𝑉𝑡𝑡ℎ + ∆𝑉𝑉𝑡𝑡ℎ − 𝜙𝜙𝐹𝐹)/𝜂𝜂𝑘𝑘𝑏𝑏𝑇𝑇]  and 
𝜂𝜂 = (𝑆𝑆𝑆𝑆/𝑉𝑉𝑇𝑇) ln 10. On dividing the (114) by (113) will yield: 

𝑆𝑆𝑑𝑑𝑑𝑑,𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑑𝑑𝑑𝑑,𝑆𝑆𝑆𝑆

= 𝑒𝑒0.8

4
𝑒𝑒

𝑞𝑞(𝑉𝑉𝑔𝑔𝑔𝑔−𝑉𝑉𝑡𝑡ℎ−𝜙𝜙𝐹𝐹)
𝜂𝜂𝑘𝑘𝑏𝑏𝑇𝑇

𝑒𝑒
𝑞𝑞(𝑉𝑉𝑔𝑔𝑔𝑔−∆𝜒𝜒𝑚𝑚𝑑𝑑−𝜙𝜙𝐹𝐹)

2𝑘𝑘𝑏𝑏𝑇𝑇
  

           = 𝑒𝑒0.8

4
𝑒𝑒

𝑞𝑞(𝑉𝑉𝑔𝑔𝑔𝑔−𝑉𝑉𝑡𝑡ℎ−𝜙𝜙𝐹𝐹)
𝜂𝜂𝑘𝑘𝑏𝑏𝑇𝑇

𝑒𝑒
𝑞𝑞(𝑉𝑉𝑔𝑔𝑔𝑔−𝑉𝑉𝑡𝑡ℎ−𝜙𝜙𝐹𝐹+𝑉𝑉𝑡𝑡ℎ−∆𝜒𝜒𝑚𝑚𝑑𝑑)

2𝑘𝑘𝑏𝑏𝑇𝑇
  

           = 𝑒𝑒0.8

4
𝑒𝑒

𝑞𝑞(𝑉𝑉𝑔𝑔𝑔𝑔−𝑉𝑉𝑡𝑡ℎ−𝜙𝜙𝐹𝐹)
𝜂𝜂𝑘𝑘𝑏𝑏𝑇𝑇 𝑒𝑒

𝑞𝑞(𝑉𝑉𝑔𝑔𝑔𝑔−𝑉𝑉𝑡𝑡ℎ−𝜙𝜙𝐹𝐹)
2𝑘𝑘𝑏𝑏𝑇𝑇

𝑒𝑒
𝑞𝑞(𝑉𝑉𝑡𝑡ℎ−∆𝜒𝜒𝑚𝑚𝑑𝑑)

2𝑘𝑘𝑏𝑏𝑇𝑇
  

           = 𝑒𝑒
𝑞𝑞(𝑉𝑉𝑔𝑔𝑔𝑔−𝑉𝑉𝑡𝑡ℎ−𝜙𝜙𝐹𝐹)

2𝜂𝜂𝑔𝑔𝑒𝑒𝑒𝑒𝑘𝑘𝑏𝑏𝑇𝑇

4
𝑔𝑔0.8𝑒𝑒

𝑞𝑞(𝑉𝑉𝑡𝑡ℎ−∆𝜒𝜒𝑚𝑚𝑑𝑑)
2𝑘𝑘𝑏𝑏𝑇𝑇

 ,  (115) 

where 𝑉𝑉𝑔𝑔𝑒𝑒 = 𝑉𝑉𝑔𝑔 + ∆𝑉𝑉𝑡𝑡ℎ and 𝜂𝜂𝑒𝑒𝑒𝑒𝑒𝑒 = 2−𝜂𝜂
𝜂𝜂 .  

In the paper [23], (115) is expressed as:   

𝑆𝑆𝑑𝑑𝑑𝑑,𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑑𝑑𝑑𝑑,𝑆𝑆𝑆𝑆

= 𝑒𝑒
𝑞𝑞(𝑉𝑉𝑔𝑔𝑔𝑔−𝑉𝑉𝑡𝑡ℎ−𝜙𝜙𝐹𝐹)

2𝜂𝜂𝑔𝑔𝑒𝑒𝑒𝑒𝑘𝑘𝑏𝑏𝑇𝑇

4
𝑔𝑔0.8𝑒𝑒

𝑞𝑞(𝑉𝑉𝑡𝑡ℎ+∆𝜒𝜒𝑚𝑚𝑑𝑑)
1𝑉𝑉

  (116) 

In this model, only one equation has to be used for both the 
subthreshold and strong inversion regime. So, it is decided to 
investigate the possibility of altering the 𝑧𝑧 parameter of 
Lambert𝑊𝑊(𝑧𝑧) in 𝑞𝑞𝑖𝑖, to accommodate for the change in slope of 
the exponent, at the point where the DG MOSFET is entering 
the subthreshold mode of operation. Considering: 

4
𝑒𝑒0.8 𝑒𝑒

𝑞𝑞(𝑉𝑉𝑡𝑡ℎ+∆𝜒𝜒𝑚𝑚𝑑𝑑)
1𝑉𝑉 = 𝐴𝐴 (from 116), the 𝑞𝑞𝑖𝑖 from (110) is 

transformed into: 

𝑞𝑞𝑖𝑖 = Lambert𝑊𝑊 [𝑞𝑞𝑡𝑡𝑜𝑜𝑜𝑜
𝜀𝜀𝑜𝑜𝑜𝑜

√ 𝑛𝑛𝑠𝑠
2𝜀𝜀𝑑𝑑𝑠𝑠

2𝑘𝑘𝑏𝑏𝑇𝑇𝑁𝑁𝑑𝑑𝑠𝑠

𝑒𝑒
𝑞𝑞(𝑉𝑉𝑔𝑔𝑔𝑔−∆𝜒𝜒𝑚𝑚𝑑𝑑−𝜙𝜙𝐹𝐹)

2𝑘𝑘𝑏𝑏𝑇𝑇 𝑒𝑒
𝑞𝑞(𝑉𝑉𝑔𝑔𝑔𝑔−𝑉𝑉𝑡𝑡ℎ−𝜙𝜙𝐹𝐹)

2𝜂𝜂𝑔𝑔𝑒𝑒𝑒𝑒𝑘𝑘𝑏𝑏𝑇𝑇

𝐴𝐴+𝑒𝑒
𝑞𝑞(𝑉𝑉𝑔𝑔𝑔𝑔−𝑉𝑉𝑡𝑡ℎ−𝜙𝜙𝐹𝐹)

2𝜂𝜂𝑔𝑔𝑒𝑒𝑒𝑒𝑘𝑘𝑏𝑏𝑇𝑇
]  

In addition, to model the 𝐼𝐼𝑑𝑑𝑑𝑑, a flag 𝑖𝑖𝑖𝑖𝑆𝑆𝐼𝐼 is used, which is =
1 when the device is in strong inversion and = 0 when the 
device is in weak inversion. The 𝑖𝑖𝑖𝑖𝑆𝑆𝐼𝐼 function can be 
implemented by using “tanh” function [41−43], which is 
expressed as: 𝑖𝑖𝑖𝑖𝑆𝑆𝐼𝐼 = 1

2 + tanh[5(𝑉𝑉𝑔𝑔−∆𝑉𝑉𝑡𝑡ℎ)]
2 . Finally the 𝐼𝐼𝑑𝑑𝑑𝑑 model 

is expressed as: 

𝐼𝐼𝑑𝑑𝑑𝑑,𝑆𝑆𝑆𝑆 = 𝜇𝜇𝑛𝑛 (2𝑊𝑊
𝐿𝐿 ) (2𝜀𝜀𝑑𝑑𝑠𝑠

𝑡𝑡𝑑𝑑𝑠𝑠
) (2𝑘𝑘𝑏𝑏𝑇𝑇

𝑞𝑞 )
2

[(𝑞𝑞𝑠𝑠𝑑𝑑
2𝑟𝑟 − 𝑞𝑞𝑠𝑠𝑑𝑑

2𝑟𝑟 ) + 𝑖𝑖𝑖𝑖𝑆𝑆𝐼𝐼 ×

                                                              𝑟𝑟 ( 𝑞𝑞𝑠𝑠𝑑𝑑
2

4𝑟𝑟2 − 𝑞𝑞𝑠𝑠𝑑𝑑
2

4𝑟𝑟2)] . 
(117) 

The complete 𝐼𝐼𝑑𝑑𝑑𝑑 model (118) is incorporated with various 
effects like surface roughness scattering, velocity saturation, 
series resistance between drain and source, and CLM (shown at 
the bottom of the page). where 𝜃𝜃 is the mobility attenuation 
factor due to surface roughness scattering,  𝑣𝑣𝑑𝑑𝑠𝑠𝑡𝑡 is the high-field 
electron drift-velocity saturation, 𝑅𝑅𝑑𝑑𝑑𝑑 is the equivalent 
resistance between the source and drain, and 𝐹𝐹𝐶𝐶𝐿𝐿𝐶𝐶 is the CLM 
factor. For channel electric field of 𝐸𝐸𝑦𝑦 =105 Vcm-1 and higher, 
𝑣𝑣𝑑𝑑𝑠𝑠𝑡𝑡 in the channel reaches a value about 𝑣𝑣𝑑𝑑𝑠𝑠𝑡𝑡 =107 cms-1 [67]. 
The empirical relationship of 𝐹𝐹𝐶𝐶𝐿𝐿𝐶𝐶 is: 

𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶 = 1 + (𝜆𝜆
𝐶𝐶
)

𝐴𝐴
( 𝑉𝑉𝑑𝑑𝑖𝑖,𝑒𝑒𝑒𝑒𝑒𝑒

𝑉𝑉𝑔𝑔,𝑒𝑒𝑒𝑒𝑒𝑒−𝑉𝑉𝑡𝑡ℎ
)  (119) 

with 𝐴𝐴 = 1.2 − √𝜆𝜆/𝐶𝐶. In order to avoid a discontinuity at 𝑉𝑉𝑔𝑔 =
𝑉𝑉𝑡𝑡ℎ and 𝑉𝑉𝑑𝑑𝑑𝑑 = 𝑉𝑉𝑔𝑔 − 𝑉𝑉𝑡𝑡ℎ, the smoothing functions: 𝑉𝑉𝑔𝑔,𝑒𝑒𝑒𝑒𝑒𝑒 =
2𝑉𝑉𝑡𝑡ℎ + (𝑉𝑉𝑔𝑔 − 2𝑉𝑉𝑡𝑡ℎ) tanh(𝑉𝑉𝑔𝑔/𝑉𝑉𝑡𝑡ℎ)2

 and 𝑉𝑉𝑑𝑑𝑑𝑑,𝑒𝑒𝑒𝑒𝑒𝑒 =
𝑉𝑉𝑑𝑑𝑑𝑑 tanh (1.5𝑉𝑉𝑑𝑑𝑑𝑑/𝑉𝑉𝑔𝑔,𝑒𝑒𝑒𝑒𝑒𝑒)2

 are introduced. 
The 𝐼𝐼𝑑𝑑𝑑𝑑 models [22,23] are charge based compact model 

since the 𝐼𝐼𝑑𝑑𝑑𝑑 is expressed in terms of charge densities at source 
and drain ends. The short-channel models [20−23] have been 
integrated through Verilog-A code (given in Appendix A) in 
order to implement a DG MOSFET whose parameters are 
specified as: 𝐶𝐶 = 30 nm, 𝑊𝑊 =50 nm, 𝑡𝑡𝑑𝑑𝑖𝑖 =12 nm, 𝑡𝑡𝑜𝑜𝑜𝑜 =1 nm, 
𝑁𝑁𝑑𝑑𝑖𝑖 =1015 cm-3, 𝑁𝑁𝑑𝑑𝑑𝑑 =1020 cm-3, and 𝜇𝜇𝑛𝑛 =500 cm2/Vs. The 
Lambert𝑊𝑊 function has been coded using the algorithm given 
by Morris et al. [68]. Fig. 8 shows the 𝐼𝐼𝑑𝑑𝑑𝑑 characteristics 
observed in Spectre simulator for 𝑉𝑉𝑔𝑔 sweep from 0 to 1.2 V at 
𝑉𝑉𝑑𝑑𝑑𝑑  =1 V. Fig. 8(b) ensures symmetry of the device when the 

  

𝐼𝐼𝑑𝑑𝑑𝑑 = 𝜇𝜇𝑛𝑛
1+𝜃𝜃(𝑉𝑉𝑔𝑔−𝑉𝑉𝑡𝑡ℎ)(1+𝜇𝜇𝑛𝑛𝑉𝑉𝑑𝑑𝑑𝑑

𝑣𝑣𝑑𝑑𝑠𝑠𝑡𝑡𝐿𝐿 )+2𝑊𝑊𝐶𝐶𝑜𝑜𝑜𝑜𝜇𝜇𝑛𝑛
𝐿𝐿 𝑅𝑅𝑑𝑑𝑑𝑑(𝑉𝑉𝑔𝑔−𝑉𝑉𝑡𝑡ℎ)

(2𝑊𝑊
𝐿𝐿 ) (2𝜀𝜀𝑑𝑑𝑠𝑠

𝑡𝑡𝑑𝑑𝑠𝑠
) (2𝑘𝑘𝑏𝑏𝑇𝑇

𝑞𝑞 )
2

[(𝑞𝑞𝑖𝑖𝑑𝑑 − 𝑞𝑞𝑖𝑖𝑑𝑑) + 𝑖𝑖𝑖𝑖𝑆𝑆𝐼𝐼 × 𝜀𝜀𝑑𝑑𝑠𝑠𝑡𝑡𝑜𝑜𝑜𝑜
𝜀𝜀𝑜𝑜𝑜𝑜𝑡𝑡𝑑𝑑𝑠𝑠

(𝑞𝑞𝑖𝑖𝑑𝑑
2 − 𝑞𝑞𝑖𝑖𝑑𝑑

2 )] × 𝐹𝐹𝐶𝐶𝐿𝐿𝐶𝐶  (118) 
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polarity of 𝑉𝑉𝑑𝑑𝑑𝑑 is reversed. The transfer and output 
characteristics in Fig. 8 (c−d) are in close agreement with the 
simulation results in [23]. Fig. 9 shows the correlation between 
𝐼𝐼𝑑𝑑𝑑𝑑 models (112) and (118); it is observed that the two different 
equations lead to similar results for the same DG MOSFET 
structure. 

3) Taur et al. [24]:  

This model is an improvement over the 𝐼𝐼𝑑𝑑𝑑𝑑 model [19] by 
considering the effect of lateral electric field on mobile charge 
density which was earlier ignored due to the assumption given 
by the GCA model. This model augments the GCA to produce 
finite output conductance in the saturation region. Addition to 
this, the conventional definition of pinch-off and CLM effects 
in the saturation region has been reinterpreted. Fig. 10 shows 
the comparison TCAD simulation results with the 𝐼𝐼𝑑𝑑𝑑𝑑 
model [19] considering the parameters : 𝐿𝐿 = 100 nm, 
𝑊𝑊 = 1 µm, 𝑡𝑡𝑑𝑑𝑖𝑖 = 4 nm, 𝑡𝑡𝑜𝑜𝑜𝑜 = 2 nm, 𝜀𝜀𝑑𝑑𝑖𝑖 = 𝜀𝜀𝑜𝑜𝑜𝑜 ≈ 11.8𝜀𝜀0, 
𝜇𝜇𝑛𝑛 =200 cm2/(Vs), 𝑁𝑁𝑆𝑆𝑆𝑆 = 1021 cm-3, and 𝑉𝑉0 = 0.33 V. The 
TCAD simulation results [24] in Fig. 10 show that there is no 

pinch-off point in the channel as depicted by GCA model. The 
failure of the GCA model in bulk MOSFETs was previously 
also demonstrated in [69] through the TCAD simulation. The 
pinch-off point is interpreted as the condition in the channel at 
which there is a sign change in the vertical electric field (𝐸𝐸𝑜𝑜) 
occurs or 𝐸𝐸𝑜𝑜 = 0, which has also been suggested earlier in [70] 
(for the bulk MOSFETs only). The CLM in saturation region is 
interpreted as the movement of the point at which the oxide 
electric field becomes zero in the source side. The complete 𝐼𝐼𝑑𝑑𝑑𝑑 
model equation is expressed as: 

𝐼𝐼𝑑𝑑𝑠𝑠
𝜇𝜇𝑛𝑛𝑊𝑊

𝑦𝑦 = 4𝜀𝜀𝑠𝑠𝑠𝑠
𝑡𝑡𝑠𝑠𝑠𝑠

(2𝑘𝑘𝑏𝑏𝑇𝑇𝑞𝑞 )
2
[𝛽𝛽 tan𝛽𝛽 − 𝛽𝛽2

2 + 𝑟𝑟𝛽𝛽2 tan2 𝛽𝛽]|
𝛽𝛽=𝛽𝛽𝑑𝑑

𝛽𝛽𝑠𝑠
  

          −𝐶𝐶𝑜𝑜𝑜𝑜
4 [|𝑉𝑉𝑔𝑔 − 𝑉𝑉0 − 𝑉𝑉| − (𝑉𝑉𝑔𝑔 − 𝑉𝑉0 − 𝑉𝑉)]2   (120) 

         +𝜀𝜀𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠
2 [(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)

2
− 𝐸𝐸02] ,  

where 𝐸𝐸0 is the lateral electric field at the source can be 
calculated numerically from the relation: 

  
(a) (b) 

  
(c) (d) 

Fig. 8. Simulation results of short-channel DG MOSFET obtained in Spectre (a) transfer characteristics at 𝑉𝑉𝑑𝑑𝑑𝑑 =1V, (b) transfer characteristics at  𝑉𝑉𝑑𝑑𝑑𝑑 = −1V, 
(c) transfer characteristics for different values of  𝑉𝑉𝑑𝑑𝑑𝑑, (d) output characteristics for different values of  𝑉𝑉𝑔𝑔. 
 

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10-3

Vg (V)

I ds
 (A

)

Vds = 1 V

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0
x 10-3

Vg (V)

I ds
 (A

)

Vds = -1 V

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10-3

Vg (V)

I ds
 (A

)

Vds = 0.02 V

Vds = 0.5 V

Vds = 1 V

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5
x 10-3

Vds (V)

I ds
 (A

)

Vg = 0.8 V

Vg = 1 V

Vg = 1.2 V



ELECTRONICS, VOL. 24, NO. 1, JUNE 2020 29

𝐸𝐸0 =
𝐼𝐼𝑑𝑑𝑑𝑑

2𝜇𝜇𝑛𝑛𝑊𝑊𝐶𝐶𝑜𝑜𝑜𝑜(𝑉𝑉𝑔𝑔−𝑉𝑉0)
  (121) 

The 𝐼𝐼𝑑𝑑𝑑𝑑 model (121) results are consistence with the TCAD 
simulation results. 

IV. CONCLUSION 

A comprehensive review based on the fundamental issues 
related to electrostatic potential, threshold voltage, and drain 
current formulations of analytic models for symmetric n-type 
DG MOSFETs for long as well as short channel have been 
presented in this paper. Equations for respective models have 
been analysed, and related derivations have been carried out for 
the further application of the models. Moreover, the correlation 
between the models carried out by various researchers has also 
been surveyed and discussed. This review provides an insight 
for understanding the mathematical models and also offers 

knowledge for modeling and designing the increasingly 
important DG MOSFETS. This work can be of interest to 
researchers working in these MOSFETs. 

APPENDIX 

A. Verilog-A Implementation of Short-Channel DG 
MOSFET (n-Type) 
 
// VerilogA for nDGMOS 
`include "constants.vams" 
`include "disciplines.vams" 
module nDGMOS(Vgs,Vdd, Vss); 
input Vgs; 
inout Vdd, Vss; 
 
// Technological Parameters 
electrical Vgs, Vdd, Vss; 
parameter real Eo=8.85e-12; 
parameter real K=1.38e-23; 
parameter real T=300; 
parameter real q=1.6e-19; 
parameter real tsi=12e-9; 
parameter real tox=1e-9; 
parameter real Nsi=1e21; 
parameter real Nsd=1e26; 
parameter real ni=1.45e16; 
parameter real L=30e-9; 
parameter real W=50e-9; 
parameter real u=500e-4; 
parameter real VT=0.0259; 
 
// Model Parameters 
 
real 
Vg,Vd,Vs,Eox,Esi,lambda,Vfb,Vth,Vthlong,delVth,r
,fixed,power,n,nd,A,Vge,Vgeff,Vx,Vdeff,FCLM,num1
, 
den1,qis,num2,den2,qid,isSI,x1,x2,SS; 
 

 
 
Fig. 10. Characteristics of a short-channel DG MOSFET obtained from model 
(93) in comparison with the TCAD simulation results [24]. 
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Fig. 9. Simulation results showing transfer characteristics of a short-channel 
DG MOSFET obtained from models (112) and (118) in (a) linear scale, (b) 
semi-logarithmic scale.  
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// Threshold voltage calculation [𝑉𝑉𝑡𝑡ℎ model(98)]: 
 
analog function real threshold; 
input l; 
real 
Eox,Esi,l,Vfb,Vbi,Vds,lambda,Qth,Q,den,k1,k2,k3; 
begin 
 Eox=3.9*Eo; 
 Esi=11.68*Eo; 
 
//Built-in potential:  
 Vbi=VT*ln(Nsd*Nsi/pow(ni,2)); 
 Vds=0.02; 
 
// Flat-band voltage: 
 Vfb=-VT*ln(Nsi/ni); 
 
// Natural channel length:  
 lambda=sqrt(((Esi*tox*tsi)/(2*Eox))*(1+(E
ox*tsi)/(4*Esi*tox)-(Eox*tsi)/(16*Esi*tox))); 
 
// The Qth (38): 
 Qth=1e15*pow((1-
(5+Vds)*(lambda/(2*l))),2); 
  
 Q=(Qth*Nsi)/(pow(ni,2)*tsi); 
   den=exp(l/lambda)-1; 
   k1=(exp(4*l/lambda)-
2*exp(2*l/lambda)+1)/pow(den,4); 
  
 k2=(2*exp(l/(2*lambda))*(1+exp(l/lambda))
)/pow(den,2); 
 k3=(2*exp(3*l/lambda)-
4*exp(2*l/lambda)+2*exp(l/lambda))/pow(den,4); 
 
 threshold=Vfb+k1*VT*ln(Q)-k2*sqrt((Vbi-
VT*ln(Q))*(Vbi+Vds-VT*ln(Q)))-k3*(2*Vbi+Vds); 
 end 
endfunction 
 
// Subthreshold slope calculation [20]: 
 
analog function real subthreshold; 
input l; 
real Eox,Esi,l,lambda, alpha; 
begin 
Eox=3.9*Eo; 
Esi=11.68*Eo; 
lambda=sqrt(((Esi*tox*tsi)/(2*Eox))*(1+((Eox*tsi
)/(4*Esi*tox))-((Eox*tsi)/(16*Esi*tox)))); 
 alpha=L/(2*lambda); 
 
 subthreshold=VT*ln(10)*((exp(4*alpha)-
1)/(exp(4*alpha)+2*exp(alpha)-2*exp(3*alpha))); 
 end 
endfunction 
 
// 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 function calculation [68]: 
 
analog function real lambertw; 
input x; 
real 
x,z,L1,L2,term1,term2,term3,term4,term5,term6, 
term7,term8,term9,term10,term11; 

begin 
 if(x<8) 
 begin 
 z=x/exp(1); 
 term1=(z*(z-1))/(1+z); 
 term2=(z*pow((z-1),2))/(2*pow((1+z),3)); 
 term3=(pow((z-1),3)*(z-
2*pow(z,2)))/(6*pow((1+z),5)); 
 term4=(z*(6*pow(z,2)-8*z+1)*pow((z-
1),4))/(24*pow((1+z),7)); 
 term5=(z*(24*pow(z,3)-58*pow(z,2)+22*z-
1)*pow((z-1),5))/(120*pow((1+z),9)); 
 term6=(z*(120*pow(z,4)-
444*pow(z,3)+328*pow(z,2)-
52*z+1))/(720*pow((1+z),11)); 
 term7=(z*(720*pow(z,5)-
3708*pow(z,4)+4400*pow(z,3)-1452*pow(z,2)+114*z-
1))/(5040*pow((1+z),13)); 
  
lambertw=z-term1+term2-term3+term4-term5+term6-
term7; 
end 
 else 
 begin 
 L1=ln(x); 
 L2=ln(ln(x)); 
 term8=(L2*(-2+L2))/(2*pow(L1,2)); 
 term9=(L2*(6-
9*L2+2*pow(L2,2)))/(6*pow(L1,3)); 
 term10=(L2*(-12+36*L2-
22*pow(L2,2)+3*pow(L2,3)))/(12*pow(L1,4)); 
 term11=(L2*(60-300*L2+350*pow(L2,2)-
125*pow(L2,3)+12*pow(L2,4)))/(60*pow(L1,5)); 
 
lambertw=L1-
L2+(L2/L1)+term8+term9+term10+term11; 
 end 
 end 
endfunction 
 
//Drain-current calculation [23]: 
analog begin 
Eox=3.9*Eo; 
Esi=11.68*Eo; 
Vg=V(Vgs); 
Vd=V(Vdd); 
Vs=V(Vss); 
Vfb=-VT*ln(Nsi/ni); 
lambda=sqrt(((Esi*tox*tsi)/(2*Eox))*(1+(Eox*tsi)
/(4*Esi*tox)-(Eox*tsi)/(16*Esi*tox))); 
Vth=threshold(L); 
Vthlong=threshold(100e-9); 
delVth=Vth-Vthlong; 
r=(Esi*tox)/(Eox*tsi); 
fixed=((q*tox)/Eox)*sqrt((Esi*pow(ni,2))/(2*K*T*
Nsi)); 
power=1-sqrt(lambda/L);       
SS=subthreshold(L); 
n=SS/(VT*ln(10)); 
nd=n/(2-n); 
A=(4/exp(0.8))*exp((Vth+Vfb)/1); 
Vge=Vg+delVth; 
Vgeff=2*Vth+(Vge-2*Vth)*tanh(pow((Vge/Vth),2)); 
Vx=abs(Vd-Vs); 
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Vdeff=Vx*tanh(pow((1.5*Vx/Vgeff),2)); 
FCLM=1+(pow((lambda/L),power)*(Vdeff/(Vgeff-
Vth))); 
num1=exp((Vg+delVth-Vfb-
Vs)/(2*VT))*exp((Vg+delVth-Vth-Vs)/(2*nd*VT)); 
den1=A+exp((Vg+delVth-Vth-Vs)/(2*nd*VT)); 
x1=fixed*num1/den1; 
 
//Normalized charge density 𝑞𝑞𝑖𝑖𝑖𝑖 and 𝑞𝑞𝑖𝑖𝑖𝑖 [23]: 
qis=lambertw(x1); 
num2=exp((Vg+delVth-Vfb-
Vd)/(2*VT))*exp((Vg+delVth-Vth-Vd)/(2*nd*VT)); 
den2=A+exp((Vg+delVth-Vth-Vd)/(2*nd*VT)); 
x2=fixed*num2/den2; 
qid=lambertw(x2); 
 
//The isSI: 
isSI=(tanh(5*(Vg+delVth-Vth))/2)+0.5; 
 
//The 𝐼𝐼𝑖𝑖𝑖𝑖 model (118): 
I(Vdd,Vss) 
<+((u*2*W/L)*(2*Esi/tsi)*pow((2*VT),2)*((qis/(2*
r))-(qid/(2*r))+isSI*r*(pow((qis/(2*r)),2)-
pow((qid/(2*r)),2))))*FCLM; 
end 
endmodule 
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